Skip to main content
Log in

Nonleaky Population Transfer in a Transmon Qutrit via Largely-Detuned Drivings

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose an efficient scheme to implement nonleaky population transfer in a transmon qutrit via largely-detuned drivings. Due to weak level anharmonicity of the transmon system, the remarkable quantum leakages need to be considered in quantum coherent operations. Under the conditions of two-photon resonance and large detunings, the robust population transfer within a qutrit can be implemented via the technique of stimulated Raman adiabatic passage. Based on the accessible parameters, the feasible approach can remove the leakage error effectively, and then provides a potential approach for enhancing the transfer fidelity with transmon-regime artificial atoms experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Clarke, J., Wilhelm, F.K.: Nature 453, 1031 (2008)

    Article  ADS  Google Scholar 

  2. You, J.Q., Nori, F.: Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  3. Li, R., Hoover, M., Gaitan, F.: Quantum Inf. Comput. 9, 290 (2009)

    MathSciNet  Google Scholar 

  4. Graaf, S.E. de, et al.: Phys. Rev. Lett. 111, 137002 (2013)

    Article  ADS  Google Scholar 

  5. Wei, X., Chen, M.-F.: Quantum Inf. Process. 14, 2419 (2015)

    Article  ADS  Google Scholar 

  6. Xue, Z.-Y., Zhou, J., Wang, Z.D.: Phys. Rev. A 92, 022320 (2015)

    Article  ADS  Google Scholar 

  7. Billangeon, P.-M., Tsai, J.S., Nakamura, Y.: Phys. Rev. B 91, 094517 (2015)

    Article  ADS  Google Scholar 

  8. Liebermann, P.J., Wilhelm, F.K.: Phys. Rev. Appl. 6, 024022 (2016)

    Article  ADS  Google Scholar 

  9. Koch, J., et al.: Phys. Rev. A 76, 042319 (2007)

    Article  ADS  Google Scholar 

  10. Weides, M.P., et al.: Appl. Phys. Lett. 99, 262502 (2011)

    Article  ADS  Google Scholar 

  11. Rigetti, C., et al.: Phys. Rev. B 86, 100506(R) (2012)

    Article  ADS  Google Scholar 

  12. Campagne-Ibarcq, P., et al.: Phys. Rev. X 3, 021008 (2013)

    Google Scholar 

  13. Vijay, R., et al.: Nature 490, 77 (2012)

    Article  ADS  Google Scholar 

  14. Houck, A.A., et al.: Phys. Rev. Lett. 101, 080502 (2008)

    Article  ADS  Google Scholar 

  15. Chow, J.M., et al.: New J. Phys. 15, 115012 (2013)

    Article  ADS  Google Scholar 

  16. Feng, Z.-B.: Phys. Rev. A 91, 032307 (2015)

    Article  ADS  Google Scholar 

  17. Reagor, M., et al.: Phys. Rev. B 94, 014506 (2016)

    Article  ADS  Google Scholar 

  18. Xue, Z.-Y., et al.: Phys. Rev. Appl. 7, 054022 (2017)

    Article  ADS  Google Scholar 

  19. Novikov, S., et al.: Phys. Rev. B 88, 060503(R) (2013)

    Article  ADS  Google Scholar 

  20. Jin, X.J., et al.: Phys. Rev. Lett. 114, 240501 (2015)

    Article  ADS  Google Scholar 

  21. Khezri, M., Mlinar, E., Dressel, J., Korotkov, A.N.: Phys. Rev. A 94, 012347 (2016)

    Article  ADS  Google Scholar 

  22. Bianchetti, R., et al.: Phys. Rev. Lett. 105, 223601 (2010)

    Article  ADS  Google Scholar 

  23. Feng, Z.-B., Li, M.: Opt. Commun. 319, 56 (2014)

    Article  ADS  Google Scholar 

  24. Motzoi, F., Gambetta, J. M., Rebentrost, P., Wilhelm, F. K.: Phys. Rev. Lett. 103, 110501 (2009)

    Article  ADS  Google Scholar 

  25. De, A.: arXiv:1509.07905v1 [quant-ph]

  26. Chen, Z., et al.: Phys. Rev. Lett. 116, 020501 (2016)

    Article  ADS  Google Scholar 

  27. Shevchenko, S.N., Kiyko, A.S., Omelyanchouk, A.N., Krech, W.: Low Temp. Phys. 31, 569 (2005)

    Article  ADS  Google Scholar 

  28. Shamshutdinova, V.V., Kiyko, A.S., Shevchenko, S.N., Samsonov, B.F., Omelyanchouk, A.N.: Russ. Phys. J. 51, 578 (2008)

    Article  Google Scholar 

  29. Feng, Z.-B., Cai, Z.L., Zhang, C., Fan, L., Feng, T.: Opt. Commun. 283, 1975 (2010)

    Article  ADS  Google Scholar 

  30. Feng, Z.-B., Yan, R.-Y.: Physica C 492, 138 (2013)

    Article  ADS  Google Scholar 

  31. Shao, Z.-L., Feng, Z.-B.: Opt. Commun. 364, 185 (2016)

    Article  ADS  Google Scholar 

  32. Jerger, M., et al.: Phys. Rev. Appl. 6, 014014 (2016)

    Article  ADS  Google Scholar 

  33. Kumar, K.S., Vepsalainen, A., Danilin, S., Paraoanu, G.S.: Nat. Commun. 7, 10628 (2016)

    Article  ADS  Google Scholar 

  34. Falci, G., et al.: Phys. Rev. B 87, 214515 (2013)

    Article  ADS  Google Scholar 

  35. Di Stefano, P.G., Paladino, E., Pope, T.J., Falci, G.: Phys. Rev. A 93, 051801(R) (2016)

    Article  ADS  Google Scholar 

  36. Liu, Y.-X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Phys. Rev. Lett. 95, 087001 (2005)

    Article  ADS  Google Scholar 

  37. Xu, H.K., et al.: Nat. Commun 7, 11018 (2016)

    Article  ADS  Google Scholar 

  38. Premaratne, S.P., Wellstood, F.C., Palmer, B.S.: Nat. Commun. 8, 14148 (2017)

    Article  ADS  Google Scholar 

  39. Bergmann, K., Theuer, H., Shore, B.W.: Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the “316” Project Plan of Xuchang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Bo Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, RY., Feng, ZB. Nonleaky Population Transfer in a Transmon Qutrit via Largely-Detuned Drivings. Int J Theor Phys 57, 1802–1810 (2018). https://doi.org/10.1007/s10773-018-3705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3705-7

Keywords

Navigation