Skip to main content
Log in

Generalized Steering Robustness of Bipartite Quantum States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

EPR steering is a kind of quantum correlation that is intermediate between entanglement and Bell nonlocality. In this paper, by recalling the definitions of unsteerability and steerability, some properties of them are given, e.g, it is proved that a local quantum channel transforms every unsteerable state into an unsteerable state. Second, a way of quantifying quantum steering, which we called the generalized steering robustness (GSR), is introduced and some interesting properties are established, including: (1) GSR of a state vanishes if and only if the state is unsteerable; (2) a local quantum channel does not increase GSR of any state; (3) GSR is invariant under each local unitary operation; (4) as a function on the state space, GSR is convex and lower-semi continuous. Lastly, by using the majorization between the reduced states of two pure states, GSR of the two pure states are compared, and it is proved that every maximally entangled state has the maximal GSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrodinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Phil. Soc. 31, 555 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Acín, A., Brunner, N., Gisin, N., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  5. Cavalcanti, E.G., Jones, S.J., Wiseman, H.M., Reid, M.D.: Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox. Phys. Rev. A 80, 032112 (2009)

    Article  ADS  Google Scholar 

  6. Saunders, D.J., Jones, S.J., Wiseman, H.M., Pryde, G.J.: Experimental EPR-steering using Bell-local states. Nat. Phys. 6, 845 (2010)

    Article  Google Scholar 

  7. Bennet, A.J., Evans, D.A., Saunders, D.J., et al.: Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole. Phys. Rev. X 2, 031003 (2012)

    Google Scholar 

  8. Händchen, V., Eberle, T., Steinlechner, S., et al.: Observation of one-way Einstein-Podolsky-Rosen steering. Nat. Photonics 6, 598 (2012)

    Article  ADS  Google Scholar 

  9. Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided Device-Independent Quantum Key Distribution: Security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301(R) (2012)

    Article  ADS  Google Scholar 

  10. Wittmann, B., Ramelow, S., Steinlechner, F., et al.: Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering. New. J. Phys. 14, 053030 (2012)

    Article  ADS  Google Scholar 

  11. Steinlechner, S., Bauchrowitz, J., Eberle, T., Schnabel, R.: Strong Einstein-Podolsky-Rosen steering with unconditional entangled states. Phys. Rev. A 87, 022104 (2013)

    Article  ADS  Google Scholar 

  12. Zukowski, M., Dutta, A., Yin, Z.: Geometric Bell-like inequalities for steering. Phys. Rev. A 91, 032107 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Piani, M., Watrous, J.: Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 114, 060404 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zhu, H., Hayashi, M., Chen, L.: Universal steering inequalities. Phys. Rev. Lett. 116, 070403 (2016)

    Article  ADS  Google Scholar 

  15. Reid, M.D.: Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein-Podolsky-Rosen steering inequalities. Phys. Rev. A 88, 062338 (2013)

    Article  ADS  Google Scholar 

  16. Sun, K., Ye, X.J., Xu, J.S., et al.: Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 116, 160404 (2016)

    Article  ADS  Google Scholar 

  17. Skrzypczyk, P., Navascues, M., Cavalcanti, D.: Quantifying Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)

    Article  ADS  Google Scholar 

  18. Cavalcanti, D., Skrzypczyk, P.: Quantum steering: a review with focus on semidefinite programming. Rep. Prog. Phys. 80, 024001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Vidal, G., Tarrach, R.: Robustness of entanglement. Phys. Rev. A 59, 141 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  20. Steiner, M.: Generalized robustness of entanglement. Phys. Rev. A 67, 054305 (2003)

    Article  ADS  Google Scholar 

  21. Meng, H.X., Cao, H.X., Wang, W.H.: The robustness of contextuality and the contextuality cost of empirical models. Sci. China Phys. Mech. Astron. 59, 640303 (2016)

    Article  Google Scholar 

  22. Meng, H.X., Cao, H.X., Wang, W.H., et al.: Generalized robustness of contextuality. Entropy 18(297), 1–19 (2016)

    Google Scholar 

  23. Guo, Z.H., Cao, H.X., Qu, S.X.: Robustness of quantum correlations against linear noise. J. Phys. A: Math. Theor. 49, 195301 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, Z.H., Cao, H.X., Chen, Z.L.: Distinguishing classical correlations from quantum correlations. J. Phys. A: Math. Theor. 45, 145301 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Luo, S.L., Fu, S.S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  MATH  Google Scholar 

  27. Guo, Y., Hou, J.C.: Local channels preserving the states without measurement-induced nonlocality. J. Phys. A: Math. Theor. 46, 325301 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  29. Zhang, T.G., Yang, H., Li-Jost, X.Q., Fei, S.M.: Uniform quantification of correlations for bipartite systems, vol. 95 (2017)

  30. Cao, H.X., Guo, Z.H.: Some remarks on Bell non-locality and Einstein-Podolsky-Rosen steering of bipartite states. e-Prints arXiv:1801.09891 [quant-ph] (2018)

Download references

Acknowledgments

This subject was supported by the National Natural Science Foundation of China (11771009, 11571211, 11571213), the Fundamental Research Funds for the Central Universities (GK201703010) and the Hainan province Natural Science Research Grant of China (20151012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Guo, Z. & Cao, H. Generalized Steering Robustness of Bipartite Quantum States. Int J Theor Phys 57, 1787–1801 (2018). https://doi.org/10.1007/s10773-018-3704-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3704-8

Keywords

Navigation