Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 6, pp 1763–1773 | Cite as

Black Hole Information Problem and Wave Bursts

  • Merab Gogberashvili
  • Lasha Pantskhava
Article

Abstract

By reexamination of the boundary conditions of wave equation on a black hole horizon it is found not harmonic, but real-valued exponentially time-dependent solutions. This means that quantum particles probably do not cross the Schwarzschild horizon, but are absorbed and some are reflected by it, what potentially can solve the famous black hole information paradox. To study this strong gravitational lensing we are introducing an effective negative cosmological constant between the Schwarzschild and photon spheres. It is shown that the reflected particles can obtain their additional energy in this effective AdS space and could explain properties of some unusually strong signals, like LIGO events, gamma ray and fast radio bursts.

Keywords

Black hole Strong lensing Wave bursts 

References

  1. 1.
    LIGO Scientific and Virgo Collaborations: Phys. Rev. Lett. 116, 061102 (2016). arXiv:abs/1602.03837 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    LIGO Scientific and Virgo Collaborations: Phys. Rev. Lett. 116, 241103 (2016). arXiv:abs/1606.04855 [gr-qc]ADSCrossRefGoogle Scholar
  3. 3.
    Piran, T.: Phys. Rept. 314, 575 (1999). arXiv:abs/astro-ph/9810256 ADSCrossRefGoogle Scholar
  4. 4.
    Meszaros, P.: Rept. Prog. Phys. 69, 2259 (2006). arXiv:abs/astro-ph/0605208 ADSCrossRefGoogle Scholar
  5. 5.
    Kumar, P., Zhang, B.: Phys. Rept. 561, 1 (2014). arXiv:abs/1410.0679 [astro-ph.HE]ADSCrossRefGoogle Scholar
  6. 6.
    Lorimer, D.R., Bailes, M., McLaughlin, M.A., Narkevic, D.J., Crawford, F.: Science 318, 777 (2007). arXiv:abs/0709.4301 [astro-ph]ADSCrossRefGoogle Scholar
  7. 7.
    Thornton, D. et al.: Science 341, 53 (2013). arXiv:abs/1307.1628 [astro-ph.HE]ADSCrossRefGoogle Scholar
  8. 8.
    Keane, E.F. et al.: Nature 530, 453 (2016). arXiv:abs/1602.07477 [astro-ph.HE]ADSCrossRefGoogle Scholar
  9. 9.
    Schneider, P., Ehlers, J., Falco, E. E.: Gravitational Lenses. Springer, Berlin (1992)Google Scholar
  10. 10.
    Schneider, P., Kochanek, C., Wambsganss, J.: Gravitational Lensing: Strong, Weak and Micro. Springer, Berlin (2006)Google Scholar
  11. 11.
    Darwin, C.: Proc. R. Soc. London A 249, 180 (1959). ibid. 263, 39 (1961)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Atkinson, R.: Astron. J. 70, 517 (1965)ADSCrossRefGoogle Scholar
  13. 13.
    Frittelli, S., Kling, T.P., Newman, E.T.: Phys. Rev. D 61, 064021 (2000). arXiv:abs/gr-qc/0001037 ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Perlick, V.: Living Rev. Rel. 7, 9 (2004)CrossRefGoogle Scholar
  15. 15.
    Virbhadra, K.S., Ellis, G.F.R.: Phys. Rev. D 62, 084003 (2000). arXiv:abs/astro-ph/9904193 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Virbhadra, K.S.: Phys. Rev. D 79, 083004 (2009). arXiv:abs/0810.2109 [gr-qc]ADSCrossRefGoogle Scholar
  17. 17.
    Gogberashvili, M. arXiv:abs/1712.02637 [gr-qc]
  18. 18.
    Marolf, D.: Rep. Prog. Phys. 80, 092001 (2017). arXiv:abs/1703.02143 [gr-qc]ADSCrossRefGoogle Scholar
  19. 19.
    Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon, New York (1983)MATHGoogle Scholar
  20. 20.
    Starobinskii, A. A.: Sov. Phys. JETP 37, 28 (1973)ADSGoogle Scholar
  21. 21.
    Matzner, R. A.: J. Mat. Phys. 9, 163 (1968)ADSCrossRefGoogle Scholar
  22. 22.
    Khelashvili, A., Nadareishvili, T.: Am. J. Phys. 79, 668 (2011). arXiv:abs/1009.2694 [quant-ph]ADSCrossRefGoogle Scholar
  23. 23.
    Khelashvili, A.: Phys. Part. Nucl. Lett. 12, 11 (2015). arXiv:abs/1502.04008 [hep-th]CrossRefGoogle Scholar
  24. 24.
    Cantelaube, Y.C., Khelif, A.L.: J. Math. Phys. 51, 053518 (2010)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Jackson, J. D.: Classical Electrodynamics. Wiley, New York (1999)MATHGoogle Scholar
  26. 26.
    Qin, Y. -P.: Sci. China Phys. Mech. Astron. 55, 381 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Damour, T., Ruffini, R.: Phys. Rev. D 14, 332 (1976)ADSCrossRefGoogle Scholar
  28. 28.
    Sannan, S.: Gen. Rel. Grav. 20, 239 (1988)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Elizalde, E.: Phys. Rev. D 36, 1269 (1987)ADSCrossRefGoogle Scholar
  30. 30.
    Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 024007 (1999). arXiv:abs/gr-qc/9812028 ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Goldstein, H.: Classical Mechanics. Addison-Wesley, New York (1950)MATHGoogle Scholar
  32. 32.
    Motz, L., Selzer, A.: Phys. Rev. 133, B1622 (1964)ADSCrossRefGoogle Scholar
  33. 33.
    Bohm, D.: Phys. Rev. 85, 166 (1952)ADSCrossRefGoogle Scholar
  34. 34.
    Nelson, E.: Quantum Fluctuations. Princeton Univ. Press, Princeton (1985)MATHGoogle Scholar
  35. 35.
    Hall, M.J.W., Reginatto, M.: J. Phys. A 35, 3289 (2002). arXiv:abs/quant-ph/0102069 ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Grössing, G.: Phys. Lett. A 372, 4556 (2008). arXiv:abs/0711.4954 [quant-ph]ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Grössing, G.: Found. Phys. Lett. 17, 343 (2004). arXiv:abs/quant-ph/0311109 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Gogberashvili, M.: Int. J. Theor. Phys. 50, 2391 (2011). arXiv:abs/1008.2544 [gr-qc]CrossRefGoogle Scholar
  39. 39.
    Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: JHEP 1302, 062 (2013). arXiv:abs/1207.3123 [hep-th]ADSCrossRefGoogle Scholar
  40. 40.
    Braunstein, S.L.: Phys. Rev. Lett. 110, 101301 (2013). arXiv:abs/0907.1190 [quant-ph]ADSCrossRefGoogle Scholar
  41. 41.
    Giddings, S.B.: Phys. Lett. B 754, 39 (2016). arXiv:abs/1511.08221 [hep-th]ADSCrossRefGoogle Scholar
  42. 42.
    Penrose, R.: Riv. Nuovo Cimento 1, 252 (1969)Google Scholar
  43. 43.
    Piran, T., Shaham, J.: Phys. Rev. D 16, 1615 (1977)ADSCrossRefGoogle Scholar
  44. 44.
    Cruz, N., Olivares, M., Villanueva, J.R.: Class. Quant. Grav. 22, 1167 (2005). arXiv:abs/gr-qc/0408016 ADSCrossRefGoogle Scholar
  45. 45.
    Kokkotas, K.D., Schmidt, B. G.: Living Rev. Rel. 2, 2 (1999). arXiv:abs/gr-qc/9909058 CrossRefGoogle Scholar
  46. 46.
    Konoplya, R.A., Zhidenko, A.: Rev. Mod. Phys. 83, 793 (2011). arXiv:abs/1102.4014 [gr-qc]ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  2. 2.Andronikashvili Institute of PhysicsTbilisiGeorgia

Personalised recommendations