Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 6, pp 1671–1682 | Cite as

Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson Effect

Article

Abstract

In this work we investigate corrections of the quintessence regime of the dark energy on the Joule-Thomson (JT) effect of the Reissner Nordström anti de Sitter (RNAdS) black hole. The quintessence dark energy has equation of state as p q = ωρ q in which \(-1<\omega <-\frac {1}{3}\). Our calculations are restricted to ansatz: ω = − 1 (the cosmological constant regime) and \(\omega =-\frac {2}{3}\) (quintessence dark energy). To study the JT expansion of the AdS gas under the constant black hole mass, we calculate inversion temperature T i of the quintessence RNAdS black hole where its cooling phase is changed to heating phase at a particular (inverse) pressure P i . Position of the inverse point {T i , P i } is determined by crossing the inverse curves with the corresponding Gibbons-Hawking temperature on the T-P plan. We determine position of the inverse point versus different numerical values of the mass M and the charge Q of the quintessence AdS RN black hole. The cooling-heating phase transition (JT effect) is happened for M > Q in which the causal singularity is still covered by the horizon. Our calculations show sensitivity of the inverse point {T i , P i } position on the T-P plan to existence of the quintessence dark energy just for large numerical values of the AdS RN black holes charge Q. In other words the quintessence dark energy dose not affect on position of the inverse point when the AdS RN black hole takes on small charges.

References

  1. 1.
    Perlmutter, S., et al.: Supernova cosmology project collaboration. Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133 ADSCrossRefGoogle Scholar
  2. 2.
    Riess, A.G., et al.: Supernova search team collaboration, cosmological constant. Astron. J. 116, 1009 (1998). arXiv:atro-ph/9805201 ADSCrossRefGoogle Scholar
  3. 3.
    Garbavich, P.M., et al.: Supernova limits on the cosmic equation of state. Astrophys. J. 509, 74 (1998). arXiv:astro-ph/9806396 ADSCrossRefGoogle Scholar
  4. 4.
    Chiba, T.: Quintessence, the gravitational constant, and gravity. Phys. Rev. D 60, 083508 (1998). arXiv:astro-ph/9903094 ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bahcall, N.A., Ostriker, J.P., Perlmutter, S., Steinhardt, P.J.: The cosmic triangle: revealing the state of the Universe. Science 284, 1481 (1999). arXiv:astro-ph/9906463 ADSCrossRefGoogle Scholar
  6. 6.
    Steinhardt, P.J., Wang, L.M., Zlatev, I.: Cosmological tracking solutions. Phys. Rev. D59, 123504 (1999). arXiv:astro-ph/9812313
  7. 7.
    Wang, L.M., Caldwell, R.R., Ostriker, J.P., Steinhardt, P.J.: Cosmic concordance and quintessence. Astrophys. J. 530, 17 (2000). arXiv:astro-ph/9901388 ADSCrossRefGoogle Scholar
  8. 8.
    Ratra, P., Peebles, L.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    Caldwell, R.R., Dave, R., Steinhardt, P.J.: Cosmological imprint of an energy component with general equation-of-state. Phys. Rev. Lett. 80, 1582 (1998)ADSCrossRefMATHGoogle Scholar
  10. 10.
    Gibbons, G.W., Hawking, S.W.: Cosmological event horizon, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hellerman, S., Kaloper, N., Susskind, L.: String theory and quintessence. JHEP 0106, 003 (2001). arXiv:hep-th/0104180 ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Fischler, W., Kashani-poor, A., McNees, R., Paban, S.: The acceleration of the Universe, a challenge for string theory. JHEP 0107, 003 (2001). arXiv:hep-th/0104181 ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, S., Wang, B., Su, R.: Hawking radiation in a D-dimensional static spherically symmetric black hole surrounded by quintessence. Phys. Rev. D 77, 124011 (2008)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Chen, S., Jing, J.: Quasi-normal modes of a black hole surrounded by quintessence. Class. Quant. Grav. 22, 4651 (2005)ADSCrossRefMATHGoogle Scholar
  15. 15.
    Li, G.Q.: Effects of dark energy on P-V criticality of charged AdS black holes. Phys. Lett. B 735, 256 (2014). arXiv:gr-qc/1407.0011 ADSCrossRefGoogle Scholar
  16. 16.
    Kubiznak, D., Mann, R.B.: P-V criticality of charged AdS black holes. JHEP 1207, 033 (2012). arXiv:hep-th/1205.0559 ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Dolan, B.P.: Black holes and Boyle’s law - the thermodynamics of the cosmological constant. Mod. Phys. Lett. A 30, 1540002 (2015). arXiv:gr-qc/1408.4023 ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kastor, D., Ray, S., Traschen, J.: Enthalpy and the mechanics of AdS black holes. Class. Quant. Grav. 26, 195011 (2009). arXiv:hep-th/0904.2765 ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dolan, B.P.: Where is the PdV term in the first law of black hole thermodynamics? arXiv:gr-qc/209.1272
  20. 20.
    Dolan, B.P.: Pressure and volume in the first law of black hole thermodynamics. Class. Quant. Grav. 28, 235017 (2011). arXiv:gr-qc/1106.6260 ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Caceres, E., Nguyen, P.H., Pedraza, J.F.: Holographic entanglement chemistry. Phys. Rev. D 95, 106015 (2017). arXiv:hep-th/1605.00595 ADSCrossRefGoogle Scholar
  22. 22.
    Johnson, C.V.: Holographic heat engines. Class. Quantum. Grav. 31, 205002 (2014). arXiv:hep-th/1404.5982 ADSCrossRefMATHGoogle Scholar
  23. 23.
    Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Holography thermodynamics and fluctuations of charged AdS black holes. Phys. Rev. D 60, 104026 (1999)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Cai, R.G., Cao, L.M., Li, L., Yang, R.Q.: P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space. JEHP 09, 005 (2013). arXiv:gr-qc/1303.6233 Google Scholar
  26. 26.
    Wei, S.W., Liu, Y.X.: Charged AdS black hole heat engines. arXiv:gr-qc/1708.08176
  27. 27.
    Zeng, X.X., Chen, D.Y., Li, L.F.: Holographic thermalization and gravitational collapse in the space time dominated by quintessence dark energy. Phys. Rev. D 91, 046005 (2015). arXiv:hep-th/1408.6632 ADSCrossRefGoogle Scholar
  28. 28.
    Chen, S., Pan, Q., Jing, J.: Holographic superconductors in quintessence AdS black hole spacetime. Class. Quant. Grav. 30, 145001 (2013). arXiv:gr-qc/1206.2069 ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Balasubramanian, V., et al: Thermalization of strongly coupled field theories. Phys. Rev. Lett. 106, 191601 (2011). arXiv:hep-th/1012.4753 ADSCrossRefGoogle Scholar
  30. 30.
    Balasubramanian, V., et al.: Holographic Thermalization. Phys. Rev. D 84, 026010 (2011). arXiv:hep-th/1103.2683 ADSCrossRefGoogle Scholar
  31. 31.
    Galante, D., Schvellinger, M.: Thermalization with a chemical potential from AdS space. JHEP 1207, 096 (2012). arXiv:hep-th/1205.1548 ADSCrossRefGoogle Scholar
  32. 32.
    Caeres, E., Kundu, A.: Holographic thermalization with chemical potential. JHEP 1209, 055 (2012). arXiv:hep-th/1205.2354 ADSCrossRefGoogle Scholar
  33. 33.
    Zeng, X.X., Liu, B.W.: Holographic thermalization in Gauss Bonnet gravity. Phys Lett. B 726, 481 (2013). arXiv:hep-th/1305.4841 ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Zeng, X.X., Liu, X.M., Liu, B.W.: Holographic thermalization with a chemical potential in Gauss Bonnet gravity. JHEP 03, 031 (2014). arXiv:hep-th/1311.0718 ADSCrossRefGoogle Scholar
  35. 35.
    Albash, T., Johnson, C.V.: Holographic studies of entanglement entropy in superconductors. JHEP 1205, 079 (2012). arXiv:hep-th/1205.2605 ADSCrossRefGoogle Scholar
  36. 36.
    Cai, R.G., He, S., Li, L., Zhang, Y.L.: Holographic entanglement entropy in insulator/superconductor transition. JHEP 1207, 088 (2012). arXiv:hep-th/1203.6620 ADSCrossRefGoogle Scholar
  37. 37.
    Cai, R.G., Li, L., Li, L.F., Su, R.K.: Entanglement entropy in holographic P-wave superconductor/insulator model. JHEP 1306, 063 (2013). arXiv:hep-th/1303-4828 ADSCrossRefGoogle Scholar
  38. 38.
    Li, L.F., Cai, R.G., Li, L., Shen, C.: Entanglement entropy in a holographic P-Wave superconductor model. Nucl. Phys. B 894, 15 (2015). arXiv:hep-th/1310.6239 ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Cai, R.G., He, S., Li, L., Zhang, Y.L.: Holographic entanglement entropy in insulator/superconductor transition. JHEP 1207, 088 (2012). arXiv:hep-th/1203.6620 ADSCrossRefGoogle Scholar
  40. 40.
    Bai, X., Lee, B.H., Li, L., Sun, J.R., Zhang, H.Q.: Time evolution of entanglement entropy in quenched holographic superconductors. JHEP 040, 66 (2015). arXiv:hep-th/1412.5500 MathSciNetCrossRefGoogle Scholar
  41. 41.
    Cai, R.G., Li, L., Li, L.F., Yang, R.Q.: Introduction to holographic superconductor models. Sci. China-Phys. Mech. Astron. 58, 060401 (2015). arXiv:hep-th/1502.00437 Google Scholar
  42. 42.
    Ling, Y., Liu, P., Niu, C., Wu, J.P., Xian, Z.Y.: Holographic entanglement entropy close to quantum phase transition. arXiv:hep-th/1502.03661
  43. 43.
    Engelhardt, N., Hertog, T., Horowitz, G.T.: Holographic signatures of cosmological singularities. Phys. Rev. Lett. 113, 121602 (2014). arXiv:hep-th/1402.2309 ADSCrossRefGoogle Scholar
  44. 44.
    Engelhardt, N., Hertog, T., Horowitz, G.T.: Further holographic investigations of big bang singularities. JHEP 1507, 044 (2015). arXiv:hep-th/1503.08838 ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Zeng, X.X., Li, L.F.: Van der Waals phase transition in the framework of holography. Phys. Lett. B 764, 100 (2017). arXiv:hep-th/1512.08855 ADSCrossRefMATHGoogle Scholar
  46. 46.
    Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Ökcü, Ö., Aydiner, E.: Joule Thomson expansion of charged AdS Black holes. Eur. Phys. J. C 77, 24 (2017). arXiv:gr-qc/1611.06327 ADSCrossRefGoogle Scholar
  48. 48.
    Ökcü, Ö., Aydiner, E.: Joule-Thompson expansion of Kerr-AdS black holes. arXiv:gr-qc/1709.06426
  49. 49.
    Gans, P. J.: Joule Thomson expansion. Phys. Chem. I 25, 0651 (1992)Google Scholar
  50. 50.
    Kiselev, V.V.: Quintessence and black holes. Class Quant. Grav. 20, 1187 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Das, S., Majumdar, P., Bhaduri, R.K.: General logarithmic corrections to black hole entropy. Class. Quant. Grav. 19, 2355 (2002). arXiv:hep-th/0111001 ADSMathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200v3 ADSMathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105–114 (1998). arXiv:hep-th/9802109 ADSMathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Witten, E.: Anti De Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150 ADSMathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Dolan, B.P.: The cosmological constant and the black hole equation of state. Class Quant. Grav. 28, 125020 (2011). arXiv:gr-qc/1008.5023 ADSCrossRefMATHGoogle Scholar
  56. 56.
    Ghaffarnejad, H., Neyad, H., Mojahedi, M.A.: Evaporating quantum Lukewarm black holes final state from back-reaction corrections of quantum scalar fields. Astrophys. Space Sci. 346, 497 (2013)ADSCrossRefMATHGoogle Scholar
  57. 57.
    Holzhey, C., Larsen, F., Wilczek, F.: Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424, 443 (1994). arXiv:hep-th/9403108 ADSMathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). arXiv:hep-th/0603001 ADSMathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Ryu, S., Takayanagi, T.: Aspects of holographic entanglement entropy. JHEP 0608, 045 (2006). arXiv:hep-th/0605073 ADSMathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Ghaffarnejad, H.: Quantum field backreaction corrections and remnant stable evaporating Schwarzschild-de Sitter dynamical black hole. Phys. Rev. D 75, 084009 (2007)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Ghafarnejad, H: Stability of the evaporating Schwarzschild-de Sitter black hole final state. Phys. Rev. D 74, 104012 (2006)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Ghaffarnejad, H., Salehi, H.: Hadamard renormalization, conformal anomaly and cosmological event horizons. Phys. Rev. D 56, 4633 (1997). 57, 5311(E) (1998)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12(3), 498 (1971)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsSemnan UniversitySemnanIran

Personalised recommendations