Skip to main content
Log in

Non-minimal Particle Creation from Asymptotic-de Sitter Inflation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A general form of quasi-de Sitter(dS) modes is used to study the creation of particle during the inflation. Actually, by considering the general form of inflaton field equation as a function of the Hankel function index and by using the Planck 2015 constraint on spectral index, we obtain the possible new constraints for the values of coupling constant in the era with asymptotic-dS space-time. Then, we explicitly calculate the general form of expectation value of the created particles in terms of the Hankel function index and the conformal time. The correction terms in the number of created particles are very tiny in the early time but can have the significant effects in the later universe. Our result is general and at the early time limit confirm the conventional special results for the Minkowski and dS background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  2. Fulling, S.A.: Aspects of Quantum Field Theory in Curved Space-time. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  3. Parker, L.: Particle creation in expanding universes. Phys. Rev. Lett. 21, 562–564 (1968)

    Article  ADS  Google Scholar 

  4. Parker, L.: Particle creation in expanding universes. Phys. Rev. Lett. 183, 1057 (1969)

    ADS  MATH  Google Scholar 

  5. Parker, L.: Particle creation in isotropic cosmologies. Phys. Rev. Lett. 28, 705–708 (1972)

    Article  ADS  Google Scholar 

  6. Mottola, E.: Particle creation in de Sitter space. Phys. Rev. D 31, 754 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  7. Habib, S., Molina-Paris, C., Mottola, E.: Energy momentum tensor of particles created in an expanding universe. Phys. Rev. D 61, 024010 (2000)

    Article  ADS  Google Scholar 

  8. Ade, P., et al.: Planck Collaboration Collaboration, Planck 2015 results. XX. Constraints on inflation, [arXiv:1502.02114]

  9. Albrecht, A., Bolis, N., Holman, R.: Cosmological consequences of initial state entanglement. JHEP 11, 93 (2014). [arXiv:hep-th/1408.6859]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bunch, T.S., Davies, P.C.W.: Quantum field theory in de sitter space: renormalization by point-splitting. Proc. R. Soc. Lond. A 117, 360 (1978)

    Google Scholar 

  11. Linde, A.D.: new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389 (1982)

    Article  ADS  Google Scholar 

  12. Linde, A.D.: The inflationary Universe. Rept. Prog. Phys. 47, 925 (1984). ibid Inflationary Cosmology, Lect. Notes Phys. 738 (2008), [arXiv:0705.0164]

    Article  ADS  MathSciNet  Google Scholar 

  13. Ashoorioon, A., et al.: Non-Bunch-Davies initial state reconciles chaotic models with BICEP and planck. Phys. Lett. B 737, 98–102 (2014). [arXiv:hep-th/1403.6099]

    Article  ADS  Google Scholar 

  14. Xue, W., Chen, B.: α-vacuum and inflationary bispectrum. Phys. Rev. D 79, 043518 (2009). [arXiv:hep-th/0806.4109]

    Article  ADS  Google Scholar 

  15. Holman, R., Tolley, A.J.: Enhanced Non-Gaussianity from excited initial states. JCAP 05, 001 (2008)

    Article  ADS  Google Scholar 

  16. Meerburg, P.D., van der Schaar, J.P., Corasaniti, P.S.: Signatures of initial state modifications on bispectrum statistics. JCAP 0905, 018 (2009). [arXiv:hep-th/0901.4044]

    Article  ADS  Google Scholar 

  17. Ganc, J.: Calculating the local-type f N L for slow-roll inflation with a non-vacuum initial state. Phys. Rev. D 84, 063514 (2011). [arXiv:astro-ph/1104.0244]

    Article  ADS  Google Scholar 

  18. Emami, R., et al.: Anisotropic inflation with the nonvacuum initial state. Phys. Rev. D 90, 023504 (2014)

    Article  ADS  Google Scholar 

  19. Agullo, I., Parker, L.: Non-gaussianities and the Stimulated creation of quanta in the inflationary universe. Phys. Rev. D 83, 063526 (2011). [arXiv:astro-ph/1010.5766]

    Article  ADS  Google Scholar 

  20. Agarwal, N., Holman, R., Tolley, A.J., Lin, J.: Effective field theory and non-Gaussianity from general inflationary states. JHEP 1305, 085 (2013). [arXiv:hep-th/1212.1172]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kundu, S.: Inflation with general initial conditions for scalar perturbations. JCAP 02, 005 (2012)

    Article  ADS  Google Scholar 

  22. Kundu, S.: Non-Gaussianity consistency relations, initial states and back-reaction. JCAP 04, 016 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Das, S., Mohanty, S.: Non-Gaussianity as a signature of thermal initial condition of inflation. Phys. Rev. D 80, 123537 (2009). [arXiv:astro-ph/0908.2305]

    Article  ADS  Google Scholar 

  24. Bahrami, S., Flanagan, E.E.: Primordial non-Gaussianities in single field inflationary models with nontrivial initial states. JCAP 1410(10), 010 (2014)

    Article  ADS  Google Scholar 

  25. Ashoorioon, A., Shiu, G.: A note on calm excited states of inflation. JCAP 1103, 025 (2011). [arXiv:1012.3392]

    Article  ADS  Google Scholar 

  26. Yusofi, E., Mohsenzadeh, M.: Scale-dependent power spectrum from initial excited-de Sitter modes. JHEP 09, 020 (2014). [arXiv:astro-ph/1402.6968]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Yusofi, E., Mohsenzadeh, M.: Non-linear trans-planckian corrections of spectra due to the non-trivial initial states. Phys. Lett. B 735, 261–265 (2014)

    Article  ADS  MATH  Google Scholar 

  28. Yusofi, E., Mohsenzadeh, M.: An asymptotic method for selection of inflationary modes. Mod. Phys. Lett. A 30(9), 1550041 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Mohsenzadeh, M., Yusofi, E.: Higher order corrections to the asymptotic-de sitter inflation. Chin. Phys. C 41(8), 085101 (2017)

    Article  ADS  Google Scholar 

  30. Mohsenzadeh, M., Tanhayi, M.R., Yusofi, E.: Power spectrum with auxiliary fields in de Sitter space-time. Eur. Phys. J. C 74, 2920 (2014). https://doi.org/10.1140/epjc/s10052-014-2920-5. [arXiv:hep-th/1306.6722]

    Article  ADS  Google Scholar 

  31. Sojasi, A., et al.: Large angular scale CMB anisotropy from an excited initial mode. Chin. Phys. C 40(7), 075101 (2016)

    Article  ADS  Google Scholar 

  32. Yusofi, E., et al.: Inflation in non- de Sitter background with coherent states. Commun. Theor. Phys. 65, 308 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Mohsenzadeh, M., Yusofi, E., Tanhayi, M.R.: Particle creation with excited de Sitter modes. Can. J. Phys. 93, 1466 (2015)

    Article  ADS  Google Scholar 

  34. Faraoni, V.: Non-minimal coupling of the scalar field and inflation. Phys. Rev. D 53, 6813 (1996)

    Article  ADS  Google Scholar 

  35. Faraoni, V.: Inflation and quintessence with non-minimal coupling. Phys. Rev. D 62, 023504 (2000)

    Article  ADS  Google Scholar 

  36. Uzan, J.-P.: Phys. Rev. D 59, 123510 (1999)

    Article  ADS  Google Scholar 

  37. Bouhamdi-Lopez, M., Wands, D.: Phys. Rev. D 71, 024010 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  38. Hertzberg, M.P.: On inflation with non-minimal coupling. JHEP (11), 1–14. [arXiv:hep-ph/1002.2995] (2010)

  39. Nozari, K., Sadatian, S.D.: Non-minimal inflation after WMAP3. Mod. Phys. Lett. A 23(34), 2933–2945 (2008). [arXiv:astro-ph/0710.0058]

    Article  ADS  MATH  Google Scholar 

  40. Mukhanov, V.F., Winitzki, S.: Introduction to Quantum Effects in Gravity. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  41. Grib, A.A., Mamayev, S.G., Mostepanenko, V.M.: Vaccum Quantum Effects in Strong Fields. Friedmann Laboratory Publishing, St. Petesburg (1994)

    Google Scholar 

  42. Mamayev, S.G., Mostepanenko, V.M., Starobinskii, A.A.: Particle creation from the vacuum near a homogeneous isotropic singularity. Sov. Phys. JETP 43, 823 (1976)

    ADS  Google Scholar 

  43. Baumann, D.: TASI Lectures on Inflation, TASI 2009, [arXiv:hep-th/0907.5424]

  44. Pereira, S.H., Bessa, C.H.G., Lima, J.A.S.: Quantized fields and gravitational particle creation in f(R) expanding universes. Phys. Lett. B. [arXiv:astro-ph/0911.0622] (2012)

  45. Tsujikawa, S., Gumjudpai, B.: Density perturbations in generalized Einstein scenarios and constraints on non-minimal couplings from the Cosmic Microwave Background. Phys. Rev. D 69, 123523 (2004)

    Article  ADS  Google Scholar 

  46. Hancock, S., et al.: Direct observation of structure in the cosmic microwave background. Nature (London) 367, 333 (1994)

    Article  ADS  Google Scholar 

  47. Danielsson, U.H.: A note on inflation and transplanckian physics. Phys. Rev. D 66, 023511 (2002). arXiv:hep-th/0203198

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank M. V. Takook and K. nozari for useful and serious discussions about this work. This work has been supported by the Islamic Azad University, Ayatollah Amoli Branch, Amol, Mazandaran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yusofi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusofi, E., Mohsenzadeh, M. Non-minimal Particle Creation from Asymptotic-de Sitter Inflation. Int J Theor Phys 57, 1622–1630 (2018). https://doi.org/10.1007/s10773-018-3689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3689-3

Keywords

Navigation