Quantum Decoherence Problem in Quantum Teleportation Process in Two Three-level System

Article
  • 6 Downloads

Abstract

We present a scheme that Quantum decoherence problem in quantum teleportation process in two three-level system. Evolution of entanglement of two V-type three-level atom system with time were studied under the vacuum radiation field. When the distance between two atoms is far, that is, the two atoms are independent of each other, at this time, under the action of the vacuum radiation field, the atomic entanglement will suddenly die after a period of time; When the distance between two atoms is very small, the co-operative effect induced by the vacuum radiation field between atoms may appear entangled and suddenly recover after death. We then design the related parameter of entanglement death and entanglement, in order to find out the cause of the entanglement death in order to address them, thereby improving the quality of quantum communication.

Keywords

Entangled death Quantum evolution Two three-level system Quantum entanglement 

Notes

Acknowledgements

This work is supported by Fundamental Research Funds for the Central Universities (ZYGX2014J051).

References

  1. 1.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits[J]. Phys. Rev. Lett. 80(10), 1998 (2245)Google Scholar
  2. 2.
    Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Jiang, C.L., Fang, M.F., Wu, Z.Z.: The entanglement dynamics of two entangled atoms in the dissipative cavity[J] (2006)Google Scholar
  4. 4.
    Deng-Yu, Z., Li-Jun, X., Shi-Qing, T., et al.: Tripartite states Bell-nonlocality sudden death in a quantum-critical environment[J]. Chin. Phys. B 19(10), 100305 (2010)CrossRefGoogle Scholar
  5. 5.
    Xu, J.B., Li, S.B.: Control of the entanglement of two atoms in an optical cavity via white noise[J]. J. Phys. 7(1), 72 (2005)Google Scholar
  6. 6.
    McAneney, H., Lee, J., Kim, M.S.: Many-body entanglement in decoherence processes[J]. Phys. Rev. A 68(6), 063814 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Hamieh, S.D., Katsnelson, M.I.: Quantum entanglement dynamics and decoherence wave in spin chains at finite temperatures[J]. Phys. Rev. A 72(3), 032316 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Ikram, M., Li, F., Zubairy, M.S.: Disentanglement in a two-qubit system subjected to dissipation environments[J]. Phys. Rev. A 75(6), 062336 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Zhou, Q.C., Zhu, S.N.: Entanglement of a-type three-level atom with a single-mode field initially in the number state[J] (2005)Google Scholar
  10. 10.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission[J]. Phys. Rev. Lett. 93(14), 140404 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects[J]. Phys. Rev. Lett. 97(14), 140403 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Ficek, Z., Tanas, R.: Dark periods and revivals of entanglement in a two-qubit system[J]. Phys. Rev. A 74(2), 024304 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Ficek, Z., Tanas, R.: Delayed sudden birth of entanglement[J]. Phys. Rev. A 77(5), 054301 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Weinstein, Y.S.: Tripartite entanglement witnesses and entanglement sudden death[J]. Phys. Rev. A 79(1), 012318 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Abbott, B.P., Abbott, R., Adhikari, R., et al.: Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGOs fifth science run[J]. Phys. Rev. D 80(4), 047101 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Steane, A.: Quantum computing[J]. Rep. Prog. Phys. 61(2), 117 (1998)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Guo, L., Liang, X.T.: Entanglement evolution of field-atom and atom-atom in Tavis-Cummings model[J]. 65(8), 094211 (2009)Google Scholar
  18. 18.
    Cheng, Q.L., Xie, S.Y., Yang, Y.P.: The influence of the field frequency modulation on quantum entanglement via two-photon process[J]. 29(9), 094252 (1996)Google Scholar
  19. 19.
    Xiang-Ping, L., Jian-Shu, F., Mao-Fa, F.: Sudden death and revival of entanglement of two qubits coupled collectively to a thermal reservoir[J]. Chin. Phys. B 19(9), 094203 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Yu, T., Eberly, J.H.: Sudden death of entanglement[J]. Science 323(5914), 598–601 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Derkacz, L., Jakbczyk, L.: Quantum interference and evolution of entanglement in a system of three-level atoms[J]. Phys. Rev. A 74(3), 032313 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Derkacz, L., Jakbczyk, L.: Vacuum-induced stationary entanglement in radiatively coupled three-level atoms[J]. J. Phys. A: Math. Theor. 41(20), 205304 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Zhou, L., Yang, G.H., Patnaik, A.K.: Spontaneously generated atomic entanglement in free space reinforced by incoherent pumping[J]. Phys. Rev. A 79(6), 062102 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Network SecurityChengdu University of TechnologyChengduChina
  2. 2.School of Information and Software EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations