Skip to main content
Log in

On the Transition Probability for the Near or Exact Resonance with the RWA

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Rotating wave approximation (RWA) has been used to evaluate the transition probability and solve the Schrödinger equation approximately in quantum optics. Examples include the invalidity of the traditional adiabatic condition for the adiabaticity invoking a two-level coupled system near resonance. Here, using a two-state system driven by an oscillatory force, we derive the exact transition probability by solving the Schrödinger equation analytically for a general wave function. Our results reveal that the application of the RWA may lead to false conclusions on the transition probability for the near resonance with weak coupling, especially when the coupling strength is about a half of the transition frequency. We also investigate conditions for which RWA may work or fail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Satanin, A.M., Denisenko, M.V., Ashhab, S., Nori, F.: Phys. Rev. B 85, 184524 (2012)

    Article  ADS  Google Scholar 

  2. Jaynes, E.T., Cummings, F.W.: Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  3. Larson, J.: Phys. Rev. Lett. 108, 033601 (2012)

    Article  ADS  Google Scholar 

  4. Greentree, A.D., Koch, J., Larson, J.: J. Phys. B 46, 220201 (2013)

    Article  ADS  Google Scholar 

  5. Larson, J.: Phys. Scr. T153, 014040 (2013)

    Article  ADS  Google Scholar 

  6. Meystre, P., Sargent III, M.: Elements of Quantum Optics. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  7. Griffiths, D.J.: Introduction to Quantum Mechanics, 2nd edn. Prentice Hall (2005)

  8. Grifoni, M., Hänggi, P.: Phys. Rep. 304, 229–354 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  9. Wang, X.G., Sun, C.P.: Acta physica Sinica 5, 881–889 (1996)

    ADS  Google Scholar 

  10. Gerry, C.C., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press, New York (2005)

    Google Scholar 

  11. Amin, M.H.S.: Phys. Rev. Lett. 102, 220401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Sun, Z., Ma, J., Wang, X., Nori, F.: Phys. Rev. A 86, 012107 (2012)

    Article  ADS  Google Scholar 

  13. Silveri, M.P., Kumar, K.S., Li, J., Tuorila, J., Vepsäl äinen, A., Thuneberg, E. V., Paraoanu, G. S.: New J. Phys. 17, 043058 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Boyd, J.K.: J. Math. Phys. 41, 4330 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Xie, Q., Hai, W.: Phys. Rev. A 82, 032117 (2010)

    Article  ADS  Google Scholar 

  16. Ashhab, S., Johansson, J.R., Zagoskin, A.M., Nori, F.: Phys. Rev. A 75, 063414 (2007)

    Article  ADS  Google Scholar 

  17. Angelo, R.M., Wreszinski, W.F.: Phys. Rev. A 72, 034105 (2005)

    Article  ADS  Google Scholar 

  18. Irish, E.K., Gea-Banacloche, J., Martin, I., Schwab, K.C.: Phys. Rev. B 72, 195410 (2005)

    Article  ADS  Google Scholar 

  19. Ford, G. W., O’Connell, R.F.: Physica A 243, 377–381 (1997)

    Article  ADS  Google Scholar 

  20. Fujii, K.: ArXiv:quant-ph/1301.3585v3 (2014)

  21. Ashhab, S., Johansson, J.R., Nori, F.: Phys. Rev. A 74, 052330 (2006)

    Article  ADS  Google Scholar 

  22. Shevchenko, S.N., Ashhab, S.S., Nori, F.: Phys. Rep. 492, 1–30 (2010)

    Article  ADS  Google Scholar 

  23. Satanin, A.M., Denisenko, M.V., Gelman, A.I., Nori, F.: Phys. Rev. B 90, 104516 (2014)

    Article  ADS  Google Scholar 

  24. Ashhab, S., Nori, F.: Phys. Rev. A 81, 042311 (2010)

    Article  ADS  Google Scholar 

  25. Cao, X., You, J.Q., Zheng, H., Nori, F.: Phys. Rev. A 82, 022119 (2010)

    Article  ADS  Google Scholar 

  26. Cao, X., You, J. Q., Zheng, H., Nori, F.: New J. Phys. 13, 073002 (2011)

    Article  ADS  Google Scholar 

  27. Cao, X., Ai, Q., Sun, C.P., Nori, F.: Phys. Lett. A 376, 349–357 (2012)

    Article  ADS  Google Scholar 

  28. Garziano, L., Stassi, R., Macrì, V., Kockum, A.F., Savasta, S., Nori, F.: Phys. Rev. A 92, 063830 (2015)

    Article  ADS  Google Scholar 

  29. Cirio, M., Liberato, S.D., Lambert, N., Nori, F.: Phys. Rev. Lett. 116, 113601 (2016)

    Article  ADS  Google Scholar 

  30. Garziano, L., Macrì, V., Stassi, R., Stefano, O.D., Nori, F., Savasta, S.: Phys. Rev. Lett. 117, 043601 (2016)

    Article  ADS  Google Scholar 

  31. Stassi, R., Savasta, S., Garziano, L., Spagnolo, B., Nori, F.: New J. Phys. 18, 123005 (2016)

    Article  ADS  Google Scholar 

  32. Stefano, O.D., Stassi, R., Garziano, L., Kockum, A.F., Savasta, S., Nori, F.: New J. Phys. 19, 053010 (2017)

    Article  Google Scholar 

  33. Kockum, A.F., Miranowicz, A., Macrì, V., Savasta, S., Nori, F.: Phys. Rev. A 95, 063849 (2017)

    Article  ADS  Google Scholar 

  34. Kockum, A.F., MacRì, V., Garziano, L., Savasta, S., Nori, F: Sci. Rep. 7, 5313 (2017)

    Article  ADS  Google Scholar 

  35. Chen, Z., Wang, Y., Li, T., Tian, L., Qiu, Y., Inomata, K., Yoshihara, F., Han, S., Nori, F., Tsai, J. S., You, J. Q.: Phys. Rev. A 96, 012325 (2017)

    Article  ADS  Google Scholar 

  36. Cirio, M., Debnath, K., Lambert, N., Nori, F.: Phys. Rev. Lett. 119, 053601 (2017)

    Article  ADS  Google Scholar 

  37. Stassi, R., Macrì, V., Kockum, A.F., Stefano, O.D., Miranowicz, A., Savasta, S., Nori, F.: Phys. Rev. A 96, 023818 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

S. Li thanks the stimulating discussion with Prof. Z. Sullivan at the Physics Department of Illinois Institute of Technology. D. Li thanks Man-Hong Yung and Yanjun Hao for their discussion. All authors thank the reviewer for his useful suggestions. This work was supported by NSFC (Grant No. 10875061) and Tsinghua National Laboratory for Information Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafa Li.

Appendices

Appendix A: the Wave Function of the System Obtained with the RWA

Fujii considered a two-state system in [20],

$$\begin{array}{@{}rcl@{}} H(t) &=&-\frac{\Delta }{2}\sigma_{z}+ 2g\cos (\omega t+\phi )\sigma_{x} \end{array} $$
(A1)
$$\begin{array}{@{}rcl@{}} &=&\left( \begin{array}{cc} -\frac{\Delta }{2} & 2g\cos (\omega t+\phi ) \\ 2g\cos (\omega t+\phi ) & \frac{\Delta }{2} \end{array} \right). \end{array} $$
(A2)

With the RWA, H in (A2) is reduced to (see Eq. (9) in [20])

$$ H^{\prime }(t)=\left( \begin{array}{cc} -\frac{\Delta }{2} & ge^{i(\omega t+\phi )} \\ ge^{-i(\omega t+\phi )} & \frac{\Delta }{2} \end{array} \right) . $$
(A3)

We consider the Schrödinger equation

$$ i\frac{\partial \psi (t)}{\partial t}=H^{\prime }(t)\psi (t). $$
(A4)

Let

$$ \psi (t)=\left( \begin{array}{cc} e^{i(\omega t+\phi )/2} & 0 \\ 0 & e^{-i(\omega t+\phi )/2} \end{array} \right) {\Phi} (t). $$
(A5)

Substituting (A5) into (A4), we obtain the following Schrödinger equation (see Eq. (12) in [20])

$$ i\frac{\partial {\Phi} (t)}{\partial t}=\left( \begin{array}{cc} -\frac{\Delta -\omega }{2} & g \\ g & \frac{\Delta -\omega }{2} \end{array} \right) {\Phi} (t). $$
(A6)

Let \(\displaystyle r=\frac {\Delta -\omega }{2}\). The exact solution of the Schrödinger equation in (A6) for r = 0 (i.e. Δ = ω) was discussed in [20]. We next solve the Schrö dinger equation in (A6) for r≠ 0 (i.e. Δ≠ω).

Let \(\displaystyle \mathcal {A}=g\sigma _{x}-r\sigma _{z}\). We rewrite (A6) as follows

$$ \frac{\partial {\Phi} (t)}{\partial t}=-i\mathcal{A}{\Phi} (t). $$
(A7)

From (A7) we obtain

$$ {\Phi} (t)=e^{-i\mathcal{A}t}{\Phi} (0). $$
(A8)

A calculation yields

$$\begin{array}{@{}rcl@{}} &&e^{-i\mathcal{A}t} \\ &=&\left( \begin{array}{cc} \cos ({\Pi} t)+\frac{ir}{\Pi }\sin ({\Pi} t) & -\frac{ig}{\Pi }\sin ({\Pi} t) \\ -\frac{ig}{\Pi }\sin ({\Pi} t) & \cos ({\Pi} t)-\frac{ir}{\Pi }\sin ({\Pi} t) \end{array} \right) , \\ && \end{array} $$
(A9)

where \(\displaystyle {\Pi } =\sqrt {g^{2}+r^{2}}\). When r = 0, then π = g. The detail for the derivation of \(e^{-i\mathcal {A}t}\) is given in B. Note that Φ(0) = ψ(0) = |0〉. From (A8A9), we obtain

$$ {\Phi} (t)=\left( \begin{array}{c} \cos ({\Pi} t)+\frac{ir}{\Pi }\sin ({\Pi} t) \\ -\frac{ig}{\Pi }\sin ({\Pi} t) \end{array} \right) . $$
(A10)

From (A10A5), after omitting the phase factor ei(ωt + ϕ)/2, we obtain

$$ \psi (t)=\left( \begin{array}{c} \cos ({\Pi} t)+\frac{ir}{\Pi }\sin ({\Pi} t) \\ -\frac{ig}{\Pi }\sin ({\Pi} t)e^{-i(\omega t+\phi )} \end{array} \right) . $$
(A11)

Appendix B: Calculation of \(e^{\protect \lambda \mathcal {A}}\)

Note that \(\displaystyle e^{\lambda \mathcal {A}}={\sum }_{k = 0}^{\infty }\frac { \lambda ^{k}}{k!}\mathcal {A}^{k}\), where \(\displaystyle \mathcal {A}^{0}=I_{2}\) .

Taking \(\displaystyle {\Pi } =\sqrt {g^{2}+r^{2}}\) leads to \(\displaystyle \mathcal {A}^{2}={\Pi }^{2}I_{2}\). A calculation yields

$$ \mathcal{A}^{2k}=(g^{2}+r^{2})^{k}I_{2}={\Pi}^{2k}I_{2}, $$
(B1)

and

$$ \mathcal{A}^{2k + 1}=(g^{2}+r^{2})^{k}\mathcal{A}={\Pi}^{2k}\mathcal{A}. $$
(B2)

Then,

$$\begin{array}{@{}rcl@{}} &&e^{-it\mathcal{A}} \\ &=&{\sum}_{m = 0}^{\infty }\frac{(-it)^{2m}}{(2m)!}\mathcal{A} ^{2m}+{\sum}_{m = 0}^{\infty }\frac{(-it)^{2m + 1}}{(2m + 1)!}\mathcal{A}^{2m + 1} \\ &=&\cos ({\Pi} t)I_{2}-\frac{i}{\Pi }\sin ({\Pi} t)\mathcal{A}. \end{array} $$
(B3)

Appendix C: the Numerical Solution

Let a(t) = u(t) + iv(t) and b(t) = x(t) + iy(t), where u(0) = 1 and v(0) = x(0) = y(0) = 0. From (15) we obtain the first-order real linear system

$$ \left( \begin{array}{c} \dot{x} \\ \dot{v} \end{array} \right) =A\left( \begin{array}{c} u \\ y \end{array} \right) ,\left( \begin{array}{c} \dot{u} \\ \dot{y} \end{array} \right) =-A\left( \begin{array}{c} x \\ v \end{array} \right) , $$
(C1)

where \(\dot {x}\) denotes \(\frac {dx}{dt}\) and \(\displaystyle A=\left (\begin {array}{cc} -\beta (t) & \frac {\Omega (t)}{2} \\ \frac {\Omega (t)}{2} & \beta (t) \end {array} \right ) \). Let \(\displaystyle X=\left (\begin {array}{c} x \\ v \end {array} \right ) \) and \(\displaystyle Y=\left (\begin {array}{c} u \\ y \end {array} \right ) \), then the first-order real linear system becomes a simpler form \(\dot {X}=AY,\dot {Y}=-AX\). We then apply a forth-order Runge-Kutta scheme to the linear system

$$\begin{array}{@{}rcl@{}} X_{1} &=&A_{n}Y_{n},\text{ } \\ Y_{1} &=&-A_{n}X_{n}, \\ X_{2} &=&A_{n + 1/2}(Y_{n}+\frac{\Delta t}{2}Y_{1}),\text{ } \\ Y_{2} &=&-A_{n + 1/2}(X_{n}+\frac{\Delta t}{2}X_{1}), \\ X_{3} &=&A_{n + 1/2}(Y_{n}+\frac{\Delta t}{2}Y_{2}),\text{ } \\ Y_{3} &=&-A_{n + 1/2}(X_{n}+\frac{\Delta t}{2}X_{2}), \\ X_{4} &=&A_{n + 1}(Y_{n}+{\Delta} tY_{3}),\text{ } \\ Y_{4} &=&-A_{n + 1}(X_{n}+{\Delta} tX_{3}), \\ X_{n + 1} &=&X_{n}+\frac{\Delta t}{6}(X_{1}+ 2X_{2}+ 2X_{3}+X_{4}), \\ Y_{n + 1} &=&Y_{n}+\frac{\Delta t}{6}(Y_{1}+ 2Y_{2}+ 2Y_{3}+Y_{4}), \end{array} $$

where A n is the matrix A evaluated at t n = nΔt, An+ 1/2 is the matrix A evaluated at \(\displaystyle t_{n+\frac {1}{2} }=(n + 1/2){\Delta } t\), and An+ 1 is the matrix A evaluated at tn+ 1 = (n + 1)Δt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhao, M. & Li, S. On the Transition Probability for the Near or Exact Resonance with the RWA. Int J Theor Phys 57, 1391–1403 (2018). https://doi.org/10.1007/s10773-018-3667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3667-9

Keywords

Navigation