International Journal of Theoretical Physics

, Volume 57, Issue 5, pp 1356–1375 | Cite as

Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing

  • Bisma Bilal
  • Suhaib Ahmed
  • Vipan Kakkar


The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.


Adder Fault tolerant design QCA Clocking Reversible gate Universal gate Nanotechnology Quantum cells 


  1. 1.
    Moore, G.E.: Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998)CrossRefGoogle Scholar
  2. 2.
    Moore, G.E.: No exponential is forever: but “Forever” can be delayed![semiconductor industry]. In: Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC, pp. 20–23. 2003 IEEE International (2003)Google Scholar
  3. 3.
    Dennard, R., Gaensslen, F., Kuhn, L., Yu, H.: Design of micron MOS switching devices? IEDM Dig. Techn. Pap., p. 344 (1972)Google Scholar
  4. 4.
    Iwai, H.: Roadmap for 22nm and beyond. Microelect. Eng. 86, 1520–1528 (2009)CrossRefGoogle Scholar
  5. 5.
    Endo, M., Strano, M.S., Ajayan, P.M.: Potential applications of carbon nanotubes. In: Carbon Nanotubes, Edition, pp. 13–62. Springer, Berlin (2007)Google Scholar
  6. 6.
    Gautier, J.: Beyond CMOS: quantum devices. Microelect. Eng. 39, 263–272 (1997)CrossRefGoogle Scholar
  7. 7.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    Sugahara, S.: Perspective on field-effect spin-transistors. Phys. Status Solidi (c) 3, 4405–4413 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16, 507–531 (1986)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Parhami, B.: Fault-tolerant reversible circuits. In: Fortieth Asilomar Conference on Signals, Systems and Computers, 2006. ACSSC’06, pp. 1726–1729 (2006)Google Scholar
  14. 14.
    Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266 (1985)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Toffoli, T.: Reversible computing. In: Automata, Languages and Programming, pp. 632–644 (1980)Google Scholar
  16. 16.
    Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62, 714–716 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    Porod, W.: Quantum-dot devices and quantum-dot cellular automata. J. Frankl. Inst. 334, 1147–1175 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94, 1225–1244 (2006)CrossRefGoogle Scholar
  20. 20.
    Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14, 497–504 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Devadoss, R., Paul, K., Balakrishnan, M.: Coplanar QCA crossovers. Elect. Lett. 45, 1234–1235 (2009)CrossRefGoogle Scholar
  22. 22.
    Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct.–Process. Meas. Phenom. 19, 1752–1755 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Elect. Dev. 50, 1890–1896 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Liu, M., Lent, C.S.: Bennett and Landauer clocking in quantum-dot cellular automata. In: 10th International Workshop on Computational Electronics, pp. 120–121 (2004)Google Scholar
  25. 25.
    Orlov, A.O., Amlani, I., Kummamuru, R.K., Ramasubramaniam, R., Toth, G., Lent, C.S., et al.: Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata. Appl. Phys. Lett. 77, 295–297 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Orlov, A.O., Kummamuru, R., Ramasubramaniam, R., Lent, C.S., Bemstein, G., Snider, G.L.: Clocked quantum-dot cellular automata devices: experimental studies. In: Proceedings of the 2001 1st IEEE Conference on Nanotechnology, 2001. IEEE-NANO 2001, pp. 425–430 (2001)Google Scholar
  27. 27.
    Ma, X., Huang, J., Metra, C., Lombardi, F.: Testing reversible 1D arrays for molecular QCA. In: 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2006. DFT’06, pp. 71–79 (2006)Google Scholar
  28. 28.
    Misra, N.K., Wairya, S., Sen, B.: Design of conservative, reversible sequential logic for cost efficient emerging nano circuits with enhanced testability. Ain Shams Eng. J. (2017)Google Scholar
  29. 29.
    Roohi, A., Zand, R., Angizi, S., Demara, R.F.: A parity-preserving reversible QCA gate with self-checking cascadable resiliency. In: IEEE Transactions on Emerging Topics in Computing (2016)Google Scholar
  30. 30.
    Sasamal, T.N., Singh, A.K., Mohan, A.: Efficient design of reversible alu in quantum-dot cellular automata. Optik-Intern. J. Light Elect. Opt. 127, 6172–6182 (2016)CrossRefGoogle Scholar
  31. 31.
    Sen, B., Dutta, M., Goswami, M., Sikdar, B.K.: Modular Design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelect. J. 45, 1522–1532 (2014)CrossRefGoogle Scholar
  32. 32.
    Thapliyal, H., Ranganathan, N., Kotiyal, S.: Design of testable reversible sequential circuits. IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 21, 1201–1209 (2013)CrossRefGoogle Scholar
  33. 33.
    Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Bilal, B., Ahmed, S., Kakkar, V.: QCA based efficient toffoli gate design and implementation for nanotechnology applications. Int. J. Eng. Technol. 9(3S), 84–92 (2017)CrossRefGoogle Scholar
  35. 35.
    Bilal, B., Ahmed, S., Kakkar, V.: Optimal realization of universality of peres gate using explicit interaction of cells in quantum dot cellular automata nanotechnology. Int. J. Intell. Syst. Appl. 9(6), 75–84 (2017)Google Scholar
  36. 36.
    Thapliyal, H., Ranganathan, N.: Conservative QCA Gate (CQCA) for designing concurrently testable molecular QCA circuits. In: 22nd IEEE International Conference on VLSI Design, 2009, pp. 511–516 (2006)Google Scholar
  37. 37.
    Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E. Jr.: A first step towards cost functions for quantum cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringShri Mata Vaishno Devi UniversityKatraIndia

Personalised recommendations