Skip to main content
Log in

Tripartite Entanglement in an Atom-Cavity-Optomechanical System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate tripartite entanglement in an atom-cavity-optomechanical system consisting of a two-level atom coupled to a cavity with an oscillating mirror at one end. The maximally entangled state between the atom, the field and the oscillating mirror can be prepared in the ideal case. It is shown that the atomic coherent angle that is relatively small makes tripartite entanglement much stronger against dissipative effects in a finite time interval. The parameter k plays a very important role in the oscillating frequency of the tripartite entanglement. More importantly, the π-tangle decays more quickly with the increasing of spontaneous emission rate γ and mean photon number n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Caves, C.M.: Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75 (1980)

    Article  ADS  Google Scholar 

  2. Mancini, S., Giovannetti, V., Vitali, D.: Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett. 88, 120401 (2002)

    Article  ADS  Google Scholar 

  3. Vitali, D., Gigan, S., Ferreira, A.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  4. Marquardt, F., Girvin, S.M.: Trend: Optomechanics. Physics 2, 40 (2009)

    Article  Google Scholar 

  5. Aspelmeyer, M., Meystre, P., Schwab, K.C.: Quantum optomechanics. Phys. Today 65, 29 (2012)

    Article  Google Scholar 

  6. Kippenberg, T.J., Vahala, K.J.: Cavity opto-mechanics. Opt. Express 15, 17172 (2007)

    Article  ADS  Google Scholar 

  7. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  8. Abramovici, A., Althouse, W.E., Drever, R.W., Gürsel, Y., Kawamura, S., Raab, F.J., Shoemaker, D., Sievers, L., Spero, R.E., Thorne, K.S., Vogt, R.E., Weiss, R., Whitcomb, S.E., Zucker, M.E.: LIGO: The laser interferometer gravitational-wave observatory. Science 256, 325 (1992)

    Article  ADS  Google Scholar 

  9. Vitali, D., Mancini, S., Tombesi, P.: Optomechanical scheme for the detection of weak impulsive forces. Phys. Rev. A 64, 188 (2001)

    Article  Google Scholar 

  10. Geraci, A.A., Papp, S.B., Kitching, J.: Short-range force detection using optically cooled levitated microspheres. Phys. Rev. Lett. 105, 101101 (2010)

    Article  ADS  Google Scholar 

  11. Lamoreaux, S.K.: Casimir forces: Still surprising after 60 years. Phys. Today 60, 40 (2007)

    Article  Google Scholar 

  12. Stannigel, K., Rabl, P., Sørensen, A. S.: Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 6322 (2010)

    Article  Google Scholar 

  13. Genes, C., Vitali, D., Tombesi, P.: Emergence of atom-light-mirror entanglement inside an optical cavity. Phys. Rev. A 77, 18 (2008)

    Google Scholar 

  14. Meiser, D., Meystre, P.: Coupled dynamics of atoms and radiation pressure driven interferometers. Phys. Rev. A: At. Mol. Opt. Phys. 73, 501 (2006)

    Article  Google Scholar 

  15. Ian, H., Gong, Z.R., Liu, Y.X.: Cavity optomechanical coupling assisted by an atomic gas. Phys. Rev. A 78, 124 (2008)

    Article  Google Scholar 

  16. Marshall, W., Simon, C., Penrose, R.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. Bose, S., Jacobs, K., Knight, P.L.: A quantum optical scheme to probe the decoherence of a macroscopic object. Phys. Rev. A 59, 3204 (1999)

    Article  ADS  Google Scholar 

  18. Mancini, S., Tombesi, P.: Quantum noise reduction by radiation pressure. Phys. Rev. A: At. Mol. Opt. Phys. 49, 4055 (1994)

    Article  ADS  Google Scholar 

  19. Wang, Y.M., Liu, B., Lian, J.L.: A scheme for detecting the atom-field coupling constant in the Dicke superradiation regime using hybrid cavity optomechanical system. Opt. Express 20, 10106 (2012)

    Article  ADS  Google Scholar 

  20. Zhou, L., Han, Y., Jing, J.T.: Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence. Phys. Rev. A 83, 052117 (2011)

    Article  ADS  Google Scholar 

  21. Hammerer, K., Aspelmeyer, M., Polzik, E.S.: Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102, 020501 (2009)

    Article  ADS  Google Scholar 

  22. Liu, N., Li, J.Q., Liang, J.Q.: Entanglement in a tripartite cavity-optomechanical system. Int. J. Theor. Phys. 52, 706 (2013)

    Article  MATH  Google Scholar 

  23. James, D.F.V., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85, 625 (2007)

    Article  ADS  Google Scholar 

  24. Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This project was supported by National Natural Science Foundation of China (Grant Nos. 61368002 and 61561033), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), the Natural Science Foundation of Jiangxi Province (Grant No. 20161BAB202046), the Open Project Program of CAS Key Laboratory of Quantum Information (Grant No. KQI201704), and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghong Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q., Ye, Y., Jin, P. et al. Tripartite Entanglement in an Atom-Cavity-Optomechanical System. Int J Theor Phys 57, 1319–1337 (2018). https://doi.org/10.1007/s10773-017-3661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3661-7

Keywords

Navigation