Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 5, pp 1310–1318 | Cite as

Arbitrated Quantum Signature of Quantum Messages with a Semi-honest Arbitrator

  • Zhang MeiLing
  • Liu YuanHua
  • Nie Min
  • Zheng QingJi
  • Zheng Dong
Article

Abstract

A new arbitrated quantum signature of quantum messages with a semi-honest arbitrator is designed by utilizing the chained control-NOT(CNOT) operations encryption and the classical public board. Detailed theoretical analysis show that the proposed scheme satisfies the requirements of unforgeable and undeniable properties. The novelty is that the feasibility of signing quantum messages under the control of a semi-honest arbitrator is demonstrated. And with the help of the decoy technique, shared keys can be reused.

Keywords

Arbitrated quantum signature Semi-honest arbitrator Forgery attack Disavowal attack 

References

  1. 1.
    Barnum, H., Crepeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: Proceedings of the 43rd Annual Symposium on Foundations of Computer Science, pp 449–458. IEEE (2002)Google Scholar
  2. 2.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum signature scheme. Phys. Rev. A 65(4), 042312 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 79(5), 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 042325 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(16), 3198–3201 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Yang, Y.G., Zheng, Z., Teng, Y., Wen, Q.Y.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J.D. 61, 773–778 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Luo, M.X., Chen, X.B., Deng, Y., Yang, Y.X.: Quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 51, 2135–2142 (2012)CrossRefzbMATHGoogle Scholar
  8. 8.
    Zou, X.F., Qiu, D.W., Paulo, M.: Security analyses and improvement of arbitrated quantum signature with an untrusted arbitrator. Int. J. Theor. Phys. 52, 3295–3305 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Liu, F., Qin, S.J., Su, Q.: An arbitrated quantum signature scheme with fast signing and verifying. Quantum Inf. Process. 13(2), 491–502 (2014)CrossRefzbMATHGoogle Scholar
  10. 10.
    Fatahi, N., Naseri, M., Gong, L.H., Liao, Q.H.: High-efficient arbitrated quantum signature scheme based on cluster states. Int. J. Theor. Phys. 56, 609–616 (2017)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84(6), 062330 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Kang, M.S., Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Comment on “Quantum signature scheme with weak arbitrator”. Int. J. Theor. Phys. 53, 1862–1866 (2014)CrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang, K., Li, D., Su, Q.: Security of the arbitrated quantum signature protocols revisited. Phys. Scr. 89(1), 015102 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Xu, G.L., Zou, X.: Security analysis of an arbitrated quantum signature scheme with bell states. Int. J. Theor. Phys. 55, 4142–4156 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhang, L., Sun, H.W., Zhang, K.J., Wang, Q.L., Cai, X.Q.: The security problems in some novel arbitrated quantum signature protocols. Int. J. Theor. Phys. 56(8), 2433–2444 (2017)CrossRefzbMATHGoogle Scholar
  17. 17.
    Li, F.G., Shi, J.H.: An arbitrated quantum signature protocol based on the chained CNOT operations encryption. Quantum. Inf. Process. 14(6), 2171–2181 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 042317 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Luo, Y.P., Hwang, T.: Comment on “An arbitrated quantum signature protocol based on the chained CNOT operations encryption”. arXiv:1512.00711 (2015)
  20. 20.
    Ingemarsson, I., Simmons, G.J.: A protocol to set up shared secret schemes without the assistance of a mutually trusted party. In: Advances in Cryptology, (Eurocrypt’90), pp 266–282. Springer, Berlin (1991)Google Scholar
  21. 21.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp 175–179. IEEE, New York (1984)Google Scholar
  22. 22.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Oszmaniec, M., Grudka, A., Horodecki, M., Wójcik, A.: Creation of superposition of unknown quantum states. Phys. Rev. Lett. 116, 110403 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Sami, S., Chakrabarty, I.: A note on superposition of two unknown states using Deutsch CTC model. Mod. Phys. Lett. A 31, 1650170 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhang MeiLing
    • 1
  • Liu YuanHua
    • 1
  • Nie Min
    • 1
  • Zheng QingJi
    • 1
  • Zheng Dong
    • 1
  1. 1.School of Communication and Information EngineeringXi’an University of Posts & TelecommunicationsXi’anChina

Personalised recommendations