Skip to main content
Log in

Separability and Entanglement in the Hilbert Space Reference Frames Related Through the Generic Unitary Transform for Four Level System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H.: Phys. Today 48(10), 24 (1995)

    Article  Google Scholar 

  2. DiVincenzo, D.P.: Science 270, 255 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  3. Einstein, A., Podolsky, Y., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  4. Schrȯdinger, E.: Naturwissenschaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  5. Deutsch, D.: Proc. Roy. Soc. 400, 1818 (1985)

    Article  Google Scholar 

  6. Shor, P.W.: Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  7. Grover, L.K.: Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  8. Feynman, R.: Int. J. Theor. Phys. 21(6/7), 467 (1982)

    Article  Google Scholar 

  9. Lo, H.K., Popescu, S., Spiller, T.: Introduction to quantum computation and information. World Scientific, Singapore (1998)

  10. Steane, A.M.: Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  11. Curty, M., Lewenstein, M., Lutkenhaus, N.: Phys. Rev. Lett. 92(21), 217903 (2004)

    Article  ADS  Google Scholar 

  12. Curty, M., Guhne, O., Lewenstein, M., Lutkenhaus, N.: Phys. Rev. A 71(2), 022306 (2005)

    Article  ADS  Google Scholar 

  13. Ekert, A.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  14. Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Phys. Rev. Lett. 80, 3891 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  15. Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A.: Nature 403, 515 (2000)

    Article  ADS  Google Scholar 

  16. Ladee Fact Sheet, NASA http://nasa.gov/pdf/734209main_LADEE-fact20-sheet-20130129.pdf (2013)

  17. Rieper, E., Anders, J., Vedral, V.: arXiv:http://arXiv.org/abs/1006.4053(2010)

  18. Vidal, G., Werner, R.F.: Phys. Rev. A. 65, 032314 (2002)

    Article  ADS  Google Scholar 

  19. Hill, S., Wootters, W.K.: J. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  20. Peres, A.: Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Lett. A. 223, 1 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  23. Horodecki, M., Horodecki, P., Horodecki, R., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  24. Mancini, S., Tombesi, P., V.I.M, V.: Phys. Lett. A. 213, 1 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  25. Chernega, V.N., Man’ko, V.I.: J. Russ. Laser Res. 29, 505 (2008)

    Article  Google Scholar 

  26. Chernega, V.N., Man’ko, O.V.: J. Russ. Laser Res. 35(1), 27 (2014)

    Article  Google Scholar 

  27. Chernega, V.N., Man’ko, O.V., Man’ko, V.I.: J. Russ. Laser Res. 35(3), 278 (2014)

    Article  Google Scholar 

  28. Man’ko, V.I., Markovich, L.A.: J. Russ. Laser Res. 35(5), 518 (2014)

    Article  Google Scholar 

  29. Man’ko, V.I., Markovich, L.A.: Physica A 458, 266 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  31. Diji, P.: J. Phys. A: Math. Gen. 15, 3465 (1982)

    Article  ADS  Google Scholar 

  32. Mazhar, A., Rau, A.R.P., Alber, G.: Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  33. Hedemann, S.R.: arXiv:http://arXiv.org/abs/1310.7038 (2014)

  34. Werner, R.F.: Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  35. Simon, R.: Phys. Rev. Lett. 84(12), 2726 (2000)

    Article  ADS  Google Scholar 

  36. Mancini, S., Man’ko, O.V., Man’ko, V.I., Tombesi, P.: J. Phys. A 34, 3461 (2001)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Markovich L.A. was partly supported by the Russian Foundation for Basic Research, grant 16-08-01285 A)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Markovich.

Appendix

Appendix

1.1 Appendix 1

The parametrization of the unitary matrices (8) introduced in [31]

$$\begin{array}{@{}rcl@{}} u_{12}&=&b\sqrt{1-a^{2}}\exp(i\varphi_{22}),\\ u_{13}&=& c\sqrt{(1-a^{2})(1-b^{2})}\exp(i\varphi_{13}),\quad u_{14}= \sqrt{(1-a^{2})(1-b^{2})(1-c^{2})}\exp(i\varphi_{14}),\end{array} $$
$$\begin{array}{@{}rcl@{}} u_{22}&=&-abd\exp(i(\varphi_{12}+\varphi_{21}-\varphi_{11}))+\alpha\beta\sqrt{(1-b^{2})(1-d^{2})}\\ &\cdot&\left( \sqrt{cfh\exp(i\varphi_{22})+cd(1-f^{2})(1-h^{2})}\exp(i\varphi_{32})\right.\\ &&\left.+b\sqrt{1-c^{2}}\exp(i\varphi_{23})(f\sqrt{1-h^{2}}-dh\sqrt{1-f^{2}}\exp(i(\varphi_{32}-\varphi_{22})))\right),\end{array} $$
$$\begin{array}{@{}rcl@{}}u_{23}&=&-acd\sqrt{1-b^{2}}\exp(i(\varphi_{21}+\varphi_{13}-\varphi_{11}))\\ &-&\alpha\beta\sqrt{1-d^{2}}\exp(i(\varphi_{13}-\varphi_{12}))(b(fh\exp(i\varphi_{22})\\ &+&d\sqrt{(1-f^{2})(1-h^{2})}\exp(i\varphi_{32}))-c(1-b^{2})\sqrt{1-c^{2}}\exp(i\varphi_{23})\\ &\cdot&(f\sqrt{1-h^{2}}-dh\sqrt{1-f^{2}}\exp(i(\varphi_{32}-\varphi_{22})))),\end{array} $$
$$\begin{array}{@{}rcl@{}}u_{24}&=&-ad\sqrt{(1-b^{2})(1-c^{2})}\exp(i(\varphi_{21}+\varphi_{41}-\varphi_{11}))\\ &-&\frac{\alpha}{\beta}\sqrt(1-d^{2})\exp(i(\varphi_{14}+\varphi_{23}-\varphi_{12}))\\ &\cdot&(f\sqrt{1-h^{2}}-dh(1-f^{2})\exp(i(\varphi_{32}-\varphi_{22}))),\end{array} $$
$$\begin{array}{@{}rcl@{}}u_{32}&=&-abf\sqrt{1-d^{2}}\exp(i(\varphi_{12}+\varphi_{31}-\varphi_{11}))\\ &+&\alpha\beta\sqrt{1-b^{2}}\exp(-i\varphi_{21})(c(-dh\exp(i(\varphi_{22}+\varphi_{31}))\\ &+&f(1-d^{2})\sqrt{(1-f^{2})(1-h^{2})}\exp(i(\varphi_{31}+\varphi_{32})))\\ &-&b\sqrt{1-c^{2}}\exp(i(\varphi_{23}+\varphi_{31}))(d\sqrt{1-h^{2}}+hf(1-d^{2})\\ &\cdot&\sqrt{1-f^{2}}\exp(i(\varphi_{32}-\varphi_{22})))),\end{array} $$
$$\begin{array}{@{}rcl@{}}u_{33}&=&-acf\sqrt{(1-b^{2})(1-d^{2})}\exp(i(\varphi_{13}+\varphi_{31}-\varphi_{11}))\\ &-&\alpha\beta\exp(i(\varphi_{13}-\varphi_{12}-\varphi_{21}))(-bdh\exp(i(\varphi_{31}+\varphi_{22}))\\ &+&bf(1-d^{2})\sqrt{(1-f^{2})(1-h^{2})}\exp(i(\varphi_{31}+\varphi_{32}))\\ &+&c\sqrt{(1-b^{2})(1-c^{2})}\exp(i(\varphi_{23}+\varphi_{31}))(d\sqrt{1-h^{2}}\\ &+&hf(1-d^{2})\sqrt{1-f^{2}}\exp(i(\varphi_{32}-\varphi_{22})))),\end{array} $$
$$\begin{array}{@{}rcl@{}}u_{34}&=&-af\sqrt{(1-b^{2})(1-c^{2})(1-d^{2})}\exp(i(\varphi_{31}+\varphi_{14}-\varphi_{11}))\\ &+&\frac{\beta}{\alpha}\exp(i(\varphi_{14}+\varphi_{31}+\varphi_{23}-\varphi_{12}-\varphi_{21}))\\ &\cdot&(d\sqrt{1-h^{2}}+hf(1-d^{2})\sqrt{1-f^{2}}\exp(i(\varphi_{32}-\varphi_{22}))),\end{array} $$
$$\begin{array}{@{}rcl@{}}u_{42}&=&-ab\sqrt{(1-d^{2})(1-f^{2})}\exp(i(\varphi_{12}+\varphi_{41}-\varphi_{11}))\\ &-&\frac{\alpha}{\beta}\sqrt(1-b^{2})\exp(i(\varphi_{32}+\varphi_{41}-\varphi_{21}))(c\sqrt(1-h^{2})\\ &-&bh\sqrt(1-c^{2})\exp(i(\varphi_{23}-\varphi_{22})))\end{array} $$
$$\begin{array}{@{}rcl@{}} u_{43}&=&-ac\sqrt{(1-b^{2})(1-d^{2})(1-f^{2})}\exp(i(\varphi_{13}+\varphi_{41}-\varphi_{11}))\\ &+&\frac{\alpha}{\beta}\exp(i(\varphi_{32}+\varphi_{13}+\varphi_{41}-\varphi_{12}-\varphi_{21}))\\ &\cdot&(b\sqrt{1-h^{2}}+ch(1-b^{2})\sqrt{1-c^{2}}\exp(i(\varphi_{23}-\varphi_{22}))),\\ u_{44}&=&-a\sqrt{(1-b^{2})(1-c^{2})(1-d^{2})(1-f^{2})}\exp(i(\varphi_{14}+\varphi_{41}-\varphi_{11}))\\ &-&\alpha\beta h\exp(i(\varphi_{14}+\varphi_{41}+\varphi_{23}+\varphi_{32}-\varphi_{12}-\varphi_{21}-\varphi_{22})), \end{array} $$

where the parameters are the following

$$\begin{array}{@{}rcl@{}}\alpha = (f^{2}+d^{2}-f^{2}d^{2})^{-1/2},\quad \beta = (b^{2}+c^{2}-b^{2}c^{2})^{-1/2},\quad a,b,c,d,f,g\in[0,1].\end{array} $$

1.2 Appendix 2

The elements of the matrix (21) are the following

$$\begin{array}{@{}rcl@{}}&&\rho_{12} = l_{1}u_{21}u_{11}^{*} + l_{2}u_{22}u_{12}^{*} + l_{3}u_{23}u_{13}^{*} + l_{4}u_{24}u_{14},\\ &&\rho_{13} = l_{1}u_{11}u_{31}^{*} + l_{2}u_{12}u_{32}^{*} + l_{3}u_{13}u_{33}^{*} + l_{4}u_{14}u_{34},\\ &&\rho_{14} = l_{1}u_{21}u_{31}^{*} + l_{2}u_{22}u_{32}^{*} + l_{3}u_{23}u_{33}^{*} + l_{4}u_{24}u_{34},\\ &&\rho_{23} = l_{1}u_{11}u_{41}^{*} + l_{2}u_{12}u_{42}^{*} + l_{3}u_{13}u_{43}^{*} + l_{4}u_{14}u_{44},\\ &&\rho_{24} = l_{1}u_{21}u_{41}^{*} + l_{2}u_{22}u_{42}^{*} + l_{3}u_{23}u_{43}^{*} + l_{4}u_{24}u_{44},\\ &&\rho_{34} = l_{1}u_{41}u_{31}^{*} + l_{2}u_{42}u_{32}^{*} + l_{3}u_{43}u_{33}^{*} + l_{4}u_{44}u_{34},\\ &&\rho_{11} = l_{1}|u_{11}|^{2} + l_{2}|u_{12}|^{2} + l_{3}|u_{13}|^{2} + l_{4}|u_{14}|^{2},\\ &&\rho_{22} = l_{1}|u_{21}|^{2} + l_{2}|u_{22}|^{2} + l_{3}|u_{23}|^{2} + l_{4}|u_{24}|^{2},\\ &&\rho_{33} = l_{1}|u_{31}|^{2} + l_{2}|u_{32}|^{2} + l_{3}|u_{33}|^{2} + l_{4}|u_{34}|^{2},\\ &&\rho_{44} = l_{1}|u_{41}|^{2} + l_{2}|u_{42}|^{2} + l_{3}|u_{43}|^{2} + l_{4}|u_{44}|^{2}. \end{array} $$
(43)

The elements of the matrix (26) are the following

$$\begin{array}{@{}rcl@{}}\rho_{11}&=&l_{1}|u_{11}|^{2}+l_{3}|u_{13}|^{2},\quad\rho_{13}=l_{1}u_{11}u_{31}^{*}+l_{3}u_{13}u_{33}^{*},\\ \rho_{22}&=&l_{4}|u_{24}|^{2}+l_{2}|u_{22}|^{2},\quad\rho_{24}=l_{2}u_{22}u_{42}^{*}+ l_{4}u_{24}u_{44}^{*},\\ \rho_{31}&=&l_{1}u_{11}^{*}u_{31}+ l_{3} u_{13}^{*}u_{33},\quad\rho_{33}=l_{3}|u_{33}|^{2}+ l_{1}|u_{31}|^{2},\\ \rho_{42}&=&l_{2}u_{22}^{*}u_{42}+ l_{4}u_{24}^{*}u_{44},\quad\rho_{44}=l_{2}|u_{42}|^{2}+ l_{4}|u_{44}|^{2}. \end{array} $$

The elements of the matrix (29) are the following

$$\begin{array}{@{}rcl@{}}\rho_{11}&=&l_{1}|u_{11}|^{2}+l_{2}|u_{12}|^{2},\quad\rho_{12}=l_{1}u_{11}u_{21}^{*}+l_{2}u_{12}u_{22}^{*},\\ \rho_{21}&=&l_{1}u_{21}u_{11}^{*}+l_{2}u_{22}u_{12}^{*},\quad\rho_{22}=l_{1}|u_{21}|^{2}+ l_{2}|u_{22}|^{2},\\ \rho_{33}&=&l_{3}|u_{33}|^{2}+ l_{4}|u_{34}|^{2},\quad\rho_{34}=l_{3}u_{33}u_{43}^{*}+ l_{4}u_{34}u_{44}^{*},\\ \rho_{43}&=&l_{4}u_{44}u_{34}^{*}+ l_{3}u_{33}^{*}u_{43},\quad\rho_{44}=l_{3}|u_{43}|^{2}+ l_{4}|u_{44}|^{2}. \end{array} $$

The elements of the matrix (34) are the following

$$\begin{array}{@{}rcl@{}}\rho_{11}&=&l_{1}|u_{11}|^{2}+l_{4}|u_{14}|^{2},\quad\rho_{14}=l_{1}u_{11}u_{41}^{*}+l_{4}u_{14}u_{44}^{*},\\ \rho_{22}&=&l_{3}|u_{23}|^{2}+l_{2}|u_{22}|^{2},\quad\rho_{23}=l_{2}u_{22}u_{32}^{*}+ l_{3}u_{23}u_{33}^{*},\\ \rho_{32}&=&l_{2}u_{22}^{*}u_{32}+ l_{3} u_{23}^{*}u_{33},\quad\rho_{33}=l_{3}|u_{33}|^{2}+ l_{2}|u_{32}|^{2},\\ \rho_{41}&=&l_{1}u_{11}^{*}u_{41}+ l_{4}u_{14}^{*}u_{44},\quad\rho_{44}=l_{1}|u_{41}|^{2}+ l_{4}|u_{44}|^{2}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man’ko, V.I., Markovich, L.A. Separability and Entanglement in the Hilbert Space Reference Frames Related Through the Generic Unitary Transform for Four Level System. Int J Theor Phys 57, 1285–1303 (2018). https://doi.org/10.1007/s10773-017-3658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3658-2

Keywords

Navigation