Skip to main content

Creating Very True Quantum Algorithms for Quantum Energy Based Computing

Abstract

An interpretation of quantum mechanics is discussed. It is assumed that quantum is energy. An algorithm by means of the energy interpretation is discussed. An algorithm, based on the energy interpretation, for fast determining a homogeneous linear function f(x) := s.x = s 1 x 1 + s 2 x 2 + ⋯ + s N x N is proposed. Here x = (x 1, … , x N ), x j R and the coefficients s = (s 1, … , s N ), s j N. Given the interpolation values \((f(1), f(2),...,f(N))=\vec {y}\), the unknown coefficients \(s = (s_{1}(\vec {y}),\dots , s_{N}(\vec {y}))\) of the linear function shall be determined, simultaneously. The speed of determining the values is shown to outperform the classical case by a factor of N. Our method is based on the generalized Bernstein-Vazirani algorithm to qudit systems. Next, by using M parallel quantum systems, M homogeneous linear functions are determined, simultaneously. The speed of obtaining the set of M homogeneous linear functions is shown to outperform the classical case by a factor of N × M.

This is a preview of subscription content, access via your institution.

References

  1. De Broglie-Bohm theory - Wikipedia, the free encyclopedia

  2. Schon, C., Beige, A.: Phys. Rev. A 64, 023806 (2001)

    ADS  Article  Google Scholar 

  3. Deutsch, D.: Proc. Roy. Soc. London Ser. A 400, 97 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  4. Deutsch, D., Jozsa, R.: Proc. Roy. Soc. London Ser. A 439, 553 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  5. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Proc. Roy. Soc. London Ser. A 454, 339 (1998)

    ADS  Article  Google Scholar 

  6. Jones, J.A., Mosca, M.: J. Chem. Phys. 109, 1648 (1998)

    ADS  Article  Google Scholar 

  7. Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Nature (London) 421, 48 (2003)

    ADS  Article  Google Scholar 

  8. de Oliveira, A.N., Walborn, S.P., Monken, C.H.: J. Opt. B: Quantum Semiclass. Opt. 7, 288–292 (2005)

    ADS  Article  Google Scholar 

  9. Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Phys. Rev. Lett. 91, 187903 (2003)

    ADS  Article  Google Scholar 

  10. Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S., Zeilinger, A.: Phys. Rev. Lett. 98, 140501 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  11. Bernstein, E., Vazirani, U.: . In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC ’93), pp 11–20 (1993). https://doi.org/10.1145/167088.167097

  12. Bernstein, E., Vazirani, U.: SIAM J. Comput. 26-5, 1411–1473 (1997)

    Article  Google Scholar 

  13. Simon, D.R.: Foundations of computer science. In: 35th Annual Symposium on Proceedings. retrieved 2011-06-06, pp 116–123 (1994)

  14. Du, J., Shi, M., Zhou, X., Fan, Y., Ye, B.J., Han, R., Wu, J.: Phys. Rev. A 64, 042306 (2001)

    ADS  Article  Google Scholar 

  15. Brainis, E., Lamoureux, L.-P., Cerf, N.J., Emplit, P.h., Haelterman, M., Massar, S.: Phys. Rev. Lett. 90, 157902 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  16. Cross, A.W., Smith, G., Smolin, J.A.: Phys. Rev. A 92, 012327 (2015)

    ADS  Article  Google Scholar 

  17. Li, H., Yang, L.: Quantum Inf. Process. 14, 1787 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  18. Adcock, M.R.A., Hoyer, P., Sanders, B.C.: Quantum Inf. Process. 15, 1361 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  19. Fallek, S.D., Herold, C.D., McMahon, B.J., Maller, K.M., Brown, K.R., Amini, J.M.: New J. Phys. 18, 083030 (2016)

    ADS  Article  Google Scholar 

  20. Diep, D.N., Giang, D.H., Van Minh, N.: Int. J Theor. Phys. 56, 1948 (2017). https://doi.org/10.1007/s10773-017-3340-8

    Article  Google Scholar 

  21. Jin, W.: Quantum Inf. Process. 15, 65 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  22. Nagata, K., Resconi, G., Nakamura, T., Batle, J., Abdalla, S., Farouk, A., Geurdes, H.: Asian J. Math. Phys. 1(1), 1–4 (2017)

    Google Scholar 

  23. Nagata, K., Nakamura, T.: Open Access Library J 2, e1798 (2015). https://doi.org/10.4236/oalib.1101798

    Google Scholar 

  24. Nagata, K., Nakamura, T.: Int. J. Theor. Phys. 56, 2086 (2017). https://doi.org/10.1007/s10773-017-3352-4

    Article  Google Scholar 

  25. Nagata, K., Nakamura, T., Farouk, A.: Int. J. Theor. Phys. 56, 2887 (2017). https://doi.org/10.1007/s10773-017-3456-x

    Article  Google Scholar 

  26. Diep, D.N., Giang, D.H.: Int. J. Theor. Phys. 56, 2797 (2017). https://doi.org/10.1007/s10773-017-3444-1

    Article  Google Scholar 

  27. Nagata, K., Resconi, G., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: MOJ Ecology Environ. Sci. 2(1), 00010 (2017)

    Google Scholar 

  28. Krishna, R., Makwana, V., Suresh, A.P.: arXiv:1609.03185[quant-ph] (2016)

Download references

Acknowledgements

We thank Prof. Germano Resconi and Prof. Shahrokh Heidari for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nagata.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagata, K., Nakamura, T., Geurdes, H. et al. Creating Very True Quantum Algorithms for Quantum Energy Based Computing. Int J Theor Phys 57, 973–980 (2018). https://doi.org/10.1007/s10773-017-3630-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3630-1

Keywords

  • Quantum computation
  • Quantum algorithms