Skip to main content
Log in

Decoupling of the Leading Order DGLAP Evolution Equation with Spin Dependent Structure Functions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose an analytical solution for DGLAP evolution equations with polarized splitting functions at the Leading Order (LO) approximation based on the Laplace transform method. It is shown that the DGLAP evolution equations can be decoupled completely into two second order differential equations which then are solved analytically by using the initial conditions \(\delta F^{\mathrm {S}}(x,Q^{2})=\mathcal {F}[\partial \delta F^{\mathrm {S}}_{0}(x), \delta F^{\mathrm {S}}_{0}(x)]\) and \({\delta G}(x,Q^{2})=\mathcal {G}[\partial \delta G_{0}(x), \delta G_{0}(x)]\). We used this method to obtain the polarized structure function of the proton as well as the polarized gluon distribution function inside the proton and compared the numerical results with experimental data of COMPASS, HERMES, and AAC’08 Collaborations. It was found that there is a good agreement between our predictions and the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Airapetian, A., [HERMES Collaboration], et al.: Precise determination of the spin structure function g 1 of the proton, deuteron, and neutron. Phys. Rev. D 75, 012007 (2007)

    Article  ADS  Google Scholar 

  2. Khorraminan, A.N., Atashbar Tehrani, S., Olness, F., Taheri Monfared, S., Arbabifar, F.: Non-singlet spin-dependent structure functions. Nucl. Phys. B (Proc. Suppl.) 65, 207–208 (2010)

    Google Scholar 

  3. Alekseev, M.G., [COMPASS Collaboration], et al.: The spin-dependent structure function of the proton \({g^{p}_{1}}\) and a test of the Bjorken sum rule. Phys. Lett. B 690, 466 (2010)

    Article  ADS  Google Scholar 

  4. Blümlein, J.: The theory of deeply inelastic scattering. Prog. Part. Nucl. Phys. 69, 2884 (2013)

    Article  Google Scholar 

  5. Taghavi-Shahri, F., Mirjalili, A., Yazdanpanah, M.M.: A new approach to calculate the gluon polarization. Eur. Phys. J. C 71, 1590 (2011)

    Article  ADS  Google Scholar 

  6. Khorramian, A.N., Atashbar Tehrani, S., Taheri Monfared, S., Arbabifar, F., Olness, F.I.: Polarized deeply inelastic scattering (DIS) structure functions for nucleons and nuclei. Phys. Rev. D 83, 054017 (2011)

    Article  ADS  Google Scholar 

  7. Airapetian, A., [The HERMES Collaboration], et al.: Measurement of the proton spin structure function \({g^{p}_{1}}\) with a pure hydrogen target. Phys. Lett. B 442, 484 (1998)

    Article  ADS  Google Scholar 

  8. Adeva, B., [Spin Muon Collaboration], et al.: Spin asymmetries a 1 and structure functions g 1 of the proton and the deuteron from polarized high energy muon scattering. Phys. Rev. D 58, 112001 (1998)

    Article  ADS  Google Scholar 

  9. Adeva, B., [Spin Muon Collaboration], et al.: Spin asymmetries a 1 of the proton and the deuteron in the low x and low q 2 region from polarized high energy muon scattering. Phys. Rev. D 60, 072004 (1999)

    Article  ADS  Google Scholar 

  10. Alekseev, M., [COMPASS Collaboration], et al.: The polarised valence quark distribution from semi-inclusive DIS. Phys. Lett. B 660, 458 (2008)

    Article  ADS  Google Scholar 

  11. Deshpande, A.: Spin physics at RHIC: present and future. Pramana - J. Phys. 61, 859 (2003)

    Article  ADS  Google Scholar 

  12. Bazilevsky, A., [RHIC spin collaboration]: The RHIC spin program overview. J. Phys.: Conf. Ser. 678, 012059 (2016)

    Google Scholar 

  13. Dokshitzer, Y.L.: Calculation of the structure functions for deep inelastic scattering and e + e annihilation by perturbation theory in Quantum Chromodynamics. Sov. Phys. JETP. 46, 641 (1977)

    ADS  Google Scholar 

  14. Altarelli, G., Parisi, G.: Asymptotic freedom in parton language. Nucl. Phys. B 126, 298 (1997)

    Article  ADS  Google Scholar 

  15. Gribov, V.N., Lipatov, L.N.: Deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  16. Nadolsky, P.M., Lai, H.L., Cao, Q.H., Joey Huston, J., Pumplin, J., Stump, D., Tung, W.K., Yuan, C.-P.: Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008)

    Article  ADS  Google Scholar 

  17. Martin, A.D., Stirling, W., Thorne, R., Watt, G.: Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009)

    Article  ADS  MATH  Google Scholar 

  18. Botje, M.: A QCD analysis of HERA and fixed target structure function data. Eur. Phys. J. C 14, 285 (2000)

    Article  ADS  Google Scholar 

  19. Cafarella, A., Corianò, C., Guzzi, M.: NNLO Logarithmic expansions and exact solutions of the DGLAP equations from x-space: new algorithms for precision studies at the LHC. Nucl. Phys. B 748, 253 (2006)

    Article  ADS  Google Scholar 

  20. Cafarella, A., Corianò, C., Guzzi, M.: Precision studies of the NNLO DGLAP evolution at the LHC with Candia. Comput. Phys. Commun. 179, 665–684 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Salam, G.P., Rojo, J.: A higher order perturbative parton evolution toolkit (HOPPET). Comput. Phys. Commun. 180, 120 (2009)

    Article  ADS  Google Scholar 

  22. Vogt, A.: Efficient evolution of unpolarized and polarized parton distributions with QCD-pegasus. Comput. Phys. Commun. 170, 65 (2005)

    Article  ADS  Google Scholar 

  23. Sarma, J.K., Choudhury, D.K., Medhi, G.K.: x-distribution of deuteron structure function at low-x. Phys. Lett. B 403, 139 (1997)

    Article  ADS  Google Scholar 

  24. Ratcliffe, P.G.: A matrix approach to numerical solution of the DGLAP evolution equations. Phys. Rev. D 63, 116004 (2001)

    Article  ADS  Google Scholar 

  25. Ghasempour Nesheli, A., Mirjalili, A., Yazdanpanah, M.M.: Numerical solution of DGLAP equations using Laguerre polynomials expansion and Monte Carlo method. SpringerPlus 5, 1672 (2016)

    Article  Google Scholar 

  26. Boroun, G.R., Amiri, M.: Laguerre polynomials method in the valon model. Phys. Scr. 88, 035102 (2013)

    Article  ADS  MATH  Google Scholar 

  27. Rezaei, B., Boroun, G.R.: Analytical solution of the longitudinal structure function in the leading and next-to-leading-order analysis at low x with respect to Laguerre polynomials method. Nucl. Phys. A 857, 42 (2011)

    Article  ADS  Google Scholar 

  28. Atashbar Tehrani, S., Khorramian, A.N.: The Jacobi polynomials QCD analysis for the polarized structure function. J. High Energy Phys. 07, 048 (2007)

    Article  Google Scholar 

  29. Khanpour, H., Taheri Monfared, S., Atashbar Tehrani, S.: Nucleon spin structure functions at NNLO in the presence of target mass corrections and higher twist effects. Phys. Rev. D 95, 074006 (2017)

    Article  ADS  Google Scholar 

  30. Taghavi-Shahri, F., Khanpour, H., Atashbar Tehrani, S., Alizadeh Yazdi, Z.: Next-to-next-to-leading order QCD analysis of spin-dependent parton distribution functions and their uncertainties: Jacobi polynomials approach. Phys. Rev. D 93, 114024 (2016)

    Article  ADS  Google Scholar 

  31. Block, M.M., Durand, L., McKay, D.W.: Analytic derivation of the leading-order gluon distribution function G(x, q 2) = x g(x, q 2) from the proton structure function \({f^{2}_{p}} (x, q^{2})\). Phys. Rev. D 77, 094003 (2008)

    Article  ADS  Google Scholar 

  32. Atashbar Tehrani, S., Taghavi-Shahri, S., Mirjalili, A., Yazdanpanah, M.M.: NLO Analytical solution to the polarized parton distributions, based on the Laplace transformation. Phys. Rev. D 87, 114012 (2013)

    Article  ADS  Google Scholar 

  33. Boroun, G.R.: Solutions of independent DGLAP evolution equations for the gluon distribution and singlet structure functions in the next-to-leading order at low x. JETP 106, 700 (2008)

    Article  ADS  Google Scholar 

  34. Baishya, R., Sarma, J.K.: Method of characteristics and solution of DGLAP evolution equation in leading and next to leading order at small x. Phys. Rev. D 74, 107702 (2006)

    Article  ADS  Google Scholar 

  35. Baishya, R., Sarma, J.K.: Semi numerical solution of non-singlet Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equation up to next-to-next-to-leading order at small x. Eur. Phys. J. C 60, 585 (2009)

    Article  ADS  Google Scholar 

  36. Baishya, R., Sarma, J.K.: Solution of non-singlet DGLAP evolution equation in leading order and next to leading order at small-x. Indian J. Phys. 83, 1333 (2009)

    Article  ADS  Google Scholar 

  37. Devee1, M., Baishy, R., Sarma, J.K.: Evolution of singlet structure functions from DGLAP equation at next-to-next-to-leading order at small-x. Eur. Phys. J. C 72, 2036 (2012)

    Article  ADS  Google Scholar 

  38. Baishya, R., Jamil, U., Sarma, J.K.: Evolution of spin-dependent structure functions from DGLAP equations in leading order and next to leading order. Phys. Rev. D 79, 034030 (2009)

    Article  ADS  Google Scholar 

  39. Barone, V., Predazzi, E.: High-Energy Particle Diffraction. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  40. Boroun, G.R.: Analysis of the logarithmic slope of f 2 from the Regge gluon density behavior at small x. JETP 111, 567 (2010)

    Article  ADS  Google Scholar 

  41. Boroun, G.R., Rezaei, B., Sarma, J.K.: A phenomenological solution small x to the longitudinal structure function dynamical behavior. Int. J. Mod. Phys. A 29, 1450189 (2014)

    Article  ADS  Google Scholar 

  42. Rezaei, B., Boroun, G.R.: Analytic approach to the approximate solution of the independent DGLAP evolution equations with respect to the hard-Pomeron behavior. JETP 112, 380 (2011)

    Article  ADS  Google Scholar 

  43. Block, M.M.: A new numerical method for obtaining gluon distribution function G(x, q 2) = x g(x, q 2), from the proton structure function \(f^{p}_{2}(x, q^{2})\). Eur. Phys. J. C 65, 1 (2010)

    Article  ADS  Google Scholar 

  44. Block, M.M., Durand, L., Ha, P., McKay, D.W.: Applications of the leading-order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations to the combined HERA data on deep inelastic scattering. Phys. Rev. D 84, 094010 (2011)

    Article  ADS  Google Scholar 

  45. Boroun, G.R., Rezaei, B.: Decoupling of the DGLAP evolution equations at next-to-next-to-leading order (NNLO) at low-x. Eur. Phys. J. C 73, 2412 (2013)

    Article  ADS  Google Scholar 

  46. Boroun, G.R., Zarrin, S., Teimoury, F.: Decoupling of the DGLAP evolution equations by Laplace method. Eur. Phys. J. Plus 130, 214 (2015)

    Article  Google Scholar 

  47. Ellis, R.K., Stirling, W.J., Webber, B.R.: QCD And Collider Physics. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  48. Hirai, M., [Asymmetry Analysis collaboration(AAC)], et al.: Determination of gluon polarization from deep inelastic scattering and collider data. Nucl. Phys. B 813, 106 (2009)

    Article  ADS  Google Scholar 

  49. Leader, E., Sidorov, A.V., Stamenov, D.B.: Impact of CLAS and COMPASS data on polarized parton densities and higher twist. Phys. Rev. D 75, 074027 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Teimoury Azadbakht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azadbakht, F.T., Boroun, G.R. Decoupling of the Leading Order DGLAP Evolution Equation with Spin Dependent Structure Functions. Int J Theor Phys 57, 495–505 (2018). https://doi.org/10.1007/s10773-017-3581-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3581-6

Keywords

Navigation