International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 465–475 | Cite as

Classical Limit and Quantum Logic

  • Marcelo Losada
  • Sebastian FortinEmail author
  • Federico Holik


The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times.


Classical limit Decoherence Non-unitary evolution Quantum logic 



This research was founded by CONICET, ANCyPT, the National University of La Plata and the University of Buenos Aires. The authors want to thank Manuel Gadella and Mario Castagnino for interesting discussions.


  1. 1.
    Cohen, D.: An introduction to hilbert space and quantum logic. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  2. 2.
    Schlosshauer, M.: Decoherence and the quantum-to-classical transition. Springer, Berlin (2007)Google Scholar
  3. 3.
    Bub, J.: Interpreting the quantum world. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  4. 4.
    von Neumann, J.: Mathematische grundlagen der quantenmechanik. University Press, Heidelberg (1932)zbMATHGoogle Scholar
  5. 5.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanicsx. Ann. Math. 37, 823–843 (1936)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kalmbach, G.: Orthomodular lattices. Academic Press, San Diego (1983)zbMATHGoogle Scholar
  7. 7.
    Ballentine, L.: Quantum mechanics. Prentice Hall, New York (1990)zbMATHGoogle Scholar
  8. 8.
    Rèdei, M.: Quantum logic in algebraic approach. Kluwer Academic Publishers, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Reed, M., Simon, B.: Methods of modern mathematical physics I: Functional analysis. Academic Press, New York (1972)zbMATHGoogle Scholar
  10. 10.
    Lacki, J.: The early axiomatizations of quantum mechanics: jordan, von neumann and the continuation of hilbert’s program. Arch. Hist. Exact Sci. 54, 279–318 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Varadarajan, V.: Geometry of quantum theory I. van Nostrand, Princeton (1968)CrossRefzbMATHGoogle Scholar
  12. 12.
    Stubbe, I., Van Steirteghem, B.: Propositional systems, hilbert lattices and generalized hilbert spaces. In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook of Quantum Logic Quantum Structures: Quantum Structures, pp. 477–523. Elsevier, Amsterdam (2007)Google Scholar
  13. 13.
    Holik, F., Massri, C., Plastino, A., Zuberman, L.: On the lattice structure of probability spaces in quantum mechanics. Int. J. Theor. Phys. 52, 1836–1876 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Holik, F., Plastino, A., Sáenz, M.: A discussion on the origin of quantum probabilities. Ann. Phys. 340, 293–310 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Holik, F., Plastino, A.: Quantum mechanics: a new turn in probability theory. In: Ezziane, Z. (ed.) Contemporary Research in Quantum Systems, pp. 399–414. Nova Publishers, New York (2015)Google Scholar
  16. 16.
    Aerts, D., Durt, T., Van Bogaert, B.: Quantum probability, the classical limit and nonlocality. In: Laurikainen, K.V., Montonen, C. (eds.) Symposium on the Foundations of Modern Physics 1992: The Copenhagen Interpretation and Wolfgang Pauli, pp. 35–56. World Scientific, Singapore (1993)Google Scholar
  17. 17.
    Zeh, H.D.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69–76 (1970)ADSCrossRefGoogle Scholar
  18. 18.
    Zeh, H.D.: Toward a quantum theory of observation. Found. Phys. 3, 109–116 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    Zurek, W.: Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Zurek, W.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)CrossRefGoogle Scholar
  21. 21.
    Zurek, W.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Diósi, L.: A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 120, 377–381 (1987)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Milburn, G.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401–5406 (1991)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Casati, G., Chirikov, B.: Quantum chaos: unexpected complexity. Physica D 86, 220–237 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Polarski, D., Starobinsky, A.: Semiclassicality and decoherence of cosmological perturbations. Class. Quantum Grav. 13, 377–392 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Adler, S.: Quantum theory as an emergent phenomenon. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  27. 27.
    Kiefer, C., Polarski, D.: Why do cosmological perturbations look classical to us?. Adv. Sci. Lett. 2, 164–173 (2009)CrossRefGoogle Scholar
  28. 28.
    Castagnino, M., Lombardi, O.: The self-induced approach to decoherence in cosmology. Int. J. Theor. Phys. 42, 1281–1299 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Castagnino, M., Lombardi, O.: Self-induced decoherence: a new approach. Stud. Hist. Philos. Mod. Phys. 35, 73–107 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Castagnino, M., Lombardi, O.: Self-induced decoherence and the classical limit of quantum mechanics. Philos. Sci. 72, 764–776 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Castagnino, M., Lombardi, O.: Non-integrability and mixing in quantum systems: on the way to quantum chaosx. Stud. Hist. Philos. Mod. Phys. 38, 482–513 (2007)CrossRefzbMATHGoogle Scholar
  32. 32.
    Castagnino, M.: The classical-statistical limit of quantum mechanics. Physica A 335, 511–517 (2004)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Castagnino, M., Ordóñez, A.: Algebraic formulation of quantum decoherence. Int. J. Theor. Phys. 43, 695–719 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Lombardi, O., Castagnino, M.: A modal-hamiltonian interpretation of quantum mechanics. Stud. Hist. Philos. of Sci. 39, 380–443 (2008)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Castagnino, M., Fortin, S.: New bases for a general definition of the moving preferred basis. Mod. Phys. Lett. A 26, 2365–2373 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Fortin, S., Vanni, L.: Quantum decoherence: a logical perspective. Found. Phys. 44, 1258–1268 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Castagnino, M., Fortin, S.: Formal features of a general theoretical framework for decoherence in open and closed systems. Int. J. Theor. Phys. 52, 1379–1398 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Kolb, E., Turner, M.: The early universe. Addison-Wesley, Reading MA (1990)zbMATHGoogle Scholar
  39. 39.
    Mukhanov, V.: Physical foundations of cosmology. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  40. 40.
    Peacock, J.: Cosmological physics. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  41. 41.
    Bohm, A., Harshman, N.: Quantum theory in the rigged hilbert space — Irreversibility from causality. In: Bohm, A., Doebner, H.D., Kielanowski, P. (eds.) Irreversibility and Causality Semigroups and Rigged Hilbert Spaces, pp. 179–237. Springer, Berlin (2007)Google Scholar
  42. 42.
    Moiseyev, N.: Non-Hermitian quantum mechanics. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
  43. 43.
    Bohm, A., Gadella, M.: Dirac kets, gamow vectors, and gel’fand triplets: the rigged hilbert space formulation of quantum mechanics. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  44. 44.
    Castagnino, M., Fortin, S.: Non-hermitian hamiltonians in decoherence and equilibrium theory. J. Phys. A 45, 444009 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Fortin, S., Holik, F., Vanni, L.: Non-unitary evolution of quantum logicsx. Springer Proc. Phys. 184, 219–234 (2016)CrossRefGoogle Scholar
  46. 46.
    Clarke, J., Braginski, A.: The SQUID handbook: fundamentals and technology of SQUIDs and SQUID systems. volume I. Weinheim, Wiley-VCH (2004)CrossRefGoogle Scholar
  47. 47.
    Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithm on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Marcelo Losada
    • 1
  • Sebastian Fortin
    • 2
    Email author
  • Federico Holik
    • 3
  1. 1.CONICETUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.CONICET - Departamento de FísicaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.CONICET - Instituto de FísicaUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations