Political Dynamics Affected by Turncoats


An operatorial theoretical model based on raising and lowering fermionic operators for the description of the dynamics of a political system consisting of macro–groups affected by turncoat–like behaviors is presented. The analysis of the party system dynamics is carried on by combining the action of a suitable quadratic Hamiltonian operator with specific rules (depending on the variations of the mean values of the observables) able to adjust periodically the conservative model to the political environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Johnson, P.E.: Formal theories of politics. Mathematical modelling in political science. Elsevier Ltd, Pergamon (1989)

    Book  MATH  Google Scholar 

  2. 2.

    Lichtenegger, K., Hadzibeganovic, T.: The interplay of self–reflection, social interaction and random events in the dynamics of opinion flow in two–party democracies. Int. J. Mod. Phys. C 27 (05), 1650065 (2012). https://doi.org/10.1142/S0129183116500650. http://www.worldscientific.com/doi/pdf/10.1142/S0129183116500650

    MathSciNet  Article  Google Scholar 

  3. 3.

    Misra, A.K.: A simple mathematical model for the spread of two political parties. Nonlinear Anal. Modell. Control 17, 343–354 (2012)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Sened, I.: A model of coalition formation: theory and evidence. J. Polit. 58, 350–372 (1996)

    Article  Google Scholar 

  5. 5.

    Khrennikova, P., Haven, E., Khrennikov, A.: An application of the theory of open quantum systems to model the dynamics of party governance in the US political system. Int. J. Theor. Phys. 53, 1346–1360 (2014)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Khrennikova, P.: Quantum dynamical modeling of competition and cooperation between political parties: the coalition and non–coalition equilibrium model. J. Math. Psychol. 71, 39–50 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Merzbacher, E.: Quantum mechanics. J. Wiley, New York (1970)

    MATH  Google Scholar 

  8. 8.

    Roman, P.: Advanced Quantum Mechanics. Addison–Wesley, New York (1965)

    Google Scholar 

  9. 9.

    Bagarello, F.: Quantum Dynamics for Classical Systems: with Applications of the Number Operator. J. Wiley, New York (2012)

    Book  Google Scholar 

  10. 10.

    Bagarello, F., Oliveri, F.: An operator description of interactions between populations with applications to migration. Math. Mod. Meth. Appl. Sci. 23, 471–492 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Bagarello, F., Haven, E.: The role of information in a two–traders market. Phys. A Stat. Mech. Appl. 404, 224–233 (2014)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Bagarello, F., Haven, E.: Toward a formalization of a two traders market with information exchange. Phys. Scr. 90(1), 015203 (2015). http://stacks.iop.org/1402-4896/90/i=1/a=015203

    ADS  Article  Google Scholar 

  13. 13.

    Bagarello, F., Oliveri, F.: Dynamics of closed ecosystems described by operators. Ecol. Model. 275, 89–99 (2014)

    Article  Google Scholar 

  14. 14.

    Bagarello, F., Gargano, F., Oliveri, F.: A phenomenological operator description of dynamics of crowds: escape strategies. Appl. Math. Model. 39, 2276–2294 (2015)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Bagarello, F., Cherubini, A.M., Oliveri, F.: An operatorial description of desertification. SIAM J. Appl. Math. 76, 479–499 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Di Salvo, R., Oliveri, F.: An operatorial model for long–term survival of bacterial populations. Ricerche mat. 65, 435–447 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Di Salvo, R., Oliveri, F.: On fermionic models of a closed ecosystem with application to bacterial populations. AAPP–Phys. Math. Nat. Sci. 94(2), A5 (2016). https://doi.org/10.1478/AAPP.942A5

    MathSciNet  Google Scholar 

  18. 18.

    Bagarello, F.: An operator view on alliances in politics. SIAM J. Appl. Math. 75, 564–584 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Bagarello, F., Haven, E.: First results on applying a non–linear effect formalism to alliances between political parties and buy and sell dynamics. Phys. A 444, 403–414 (2016)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Peterson, M.: The Prisoner’s Dilemma. Cambridge University Press, Cambridge (2015)

  21. 21.

    Rothe, J.: Economics and Computation: an Introduction to Algorithmic Game Theory, Computational Social Choice, and Fair Division. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  22. 22.

    Di Salvo, R., Oliveri, F.: An Operatorial Model for Complex Political System Dynamics. Math. Meth. Appl. Sci. https://doi.org/10.1002/mma.4417 (2017)

  23. 23.

    Di Salvo, R., Gorgone, M., Oliveri, F.: (H, ρ)–Induced Political Dynamics: Facets of the Disloyal Attitudes Into the Public Opinion. Int. J. Theor. Phys. https://doi.org/10.1007/s10773-017-3380-0 (2017)

  24. 24.

    Bagarello, F., Di Salvo, R., Gargano, F., Oliveri, F.: (H, ρ)–induced dynamics and the quantum game of life. Appl. Math. Model. 43, 15–32 (2016)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Bagarello, F., Di Salvo, R., Gargano, F., Oliveri, F.: (H, ρ)–Dynamics and Large Time Behaviors, Submitted (2016)

Download references


The research was partially funded by the Ph.D. School in Mathematics and Computer Science of the University of Catania.

Author information



Corresponding author

Correspondence to Rosa Di Salvo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Salvo, R., Gorgone, M. & Oliveri, F. Political Dynamics Affected by Turncoats. Int J Theor Phys 56, 3604–3614 (2017). https://doi.org/10.1007/s10773-017-3525-1

Download citation


  • Fermionic operators
  • Political system dynamics
  • Turncoats