Skip to main content

Emergent Quantum Mechanics and the Origin of Quantum Non-local Correlations

Abstract

A geometric interpretation for quantum correlations and entanglement according to a particular framework of emergent quantum mechanics is developed. The mechanism described is based on two ingredients: 1. At an hypothetical sub-quantum level description of physical systems, the dynamics has a regime where it is partially ergodic and 2. A formal projection from a two-dimensional time mathematical formalism of the emergent quantum theory to the usual one-dimensional time formalism of quantum dynamics. Observable consequences of the theory are obtained. Among them we show that quantum correlations must be instantaneous from the point of view of the spacetime description, but the spatial distance up to which they can be observed must be bounded. It is argued how our mechanism avoids Bell theorem and Kochen-Specken theorem. Evidence for non-signaling faster than the speed of light in our proposal is discussed.

This is a preview of subscription content, access via your institution.

References

  1. Adler, S.L.: Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  2. Bancal, J.D., et al.: Quantum nonlocality based on finite-speed causal influences leads to superluminal signaling. Nat. Phys. 8, 867 (2012)

    Article  Google Scholar 

  3. Bars, I.: Survey of Two-Time Physics. Class. Quantum Gravity 18, 3113–3130 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bell, J.S.: On the Einstein-Podolski-Rosen paradox. Physica 1, 195 (1964)

    Google Scholar 

  5. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  6. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. I. Phys. Rev. 85, 166–179 (1952) ; A suggested interpretation of the quantum theory in terms of hidden variables. II, Phys. Rev. 85, 180–193 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bohm, D.: Wholeness and the Implicate Order. Routledge, London (1982)

    Google Scholar 

  8. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

    Article  ADS  MATH  Google Scholar 

  9. Cocciaro, B., Faetti, S., Fronzoni, L.: Measurements of entanglement over a kilometric distance to test superluminal models of Quantum Mechanics: preliminary results. arXiv:1702.04697

  10. Diósi, L.: Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 105, 199 (1984)

    Article  ADS  Google Scholar 

  11. Diósi, L.: Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  12. Dowker, F., Henson, J., Sorkin, R.: Quantum gravity phenomenology, Lorentz invariance and discreteness. Mod. Phys. Lett. A 19, 1829 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  14. Elze, H.T.: Quantum models as classical cellular automata, arXiv:1701.02252

  15. Elze, H.T.: Action principle for cellular automata and the linearity of quantum mechanics. Phys. Rev. A 89, 012111 (2014)

    Article  ADS  Google Scholar 

  16. Fernandez de Cordoba, P., Isidro, J.M., Vazquez Molina, J.: The holographic quantum. Published in Found. Phys. 46(7), 787 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gallego Torromé, R.: A finslerian version of. Gallego Torromé, A finslerian version of ’t Hooft Deterministic Quantum Models. J. Math. Phys. 47, 072101 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gallego Torromé, R.: Emergence of classical gravity and the objective reduction of the quantum state in deterministic models of quantum mechanics. J. Phys. Conf. Ser. 626(1), 012073 (2015)

    Article  Google Scholar 

  20. Gallego Torromé, R.: A theory of emergent quantum mechanics and emergent classical gravity, arXiv:1402.5070 [math-ph]

  21. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ghirardi, G.C., Grassi, R., Rimini, A.: Continuous-spontaneous-reduction model involving gravity. Phys. Rev. A 42, 1057 (1990)

    Article  ADS  Google Scholar 

  23. Gisin, N.: Can quantum entangled states collapse spontaneously? Phys. Lett. A 155, 445–449 (1991)

    Article  ADS  Google Scholar 

  24. Gisin, N., Scarani, V., Tittel, W., Zbinden, H.: 100 years of Q theory. Proceedings, Ann. Phys. 9, 831 (2000)

    Article  MATH  Google Scholar 

  25. Gromov, M.: Riemannian Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser, Cambridge (1999)

    MATH  Google Scholar 

  26. Grössing, G.: Emergence of quantum mechanics from a sub-quantum statistical mechanics. Int. J. Mod. Phys. B 28, 1450179 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Isham, C.: Lectures on Quantum Theory: Mathematical and Theoretical Foundations. Imperial College Press, London (1995)

    Book  MATH  Google Scholar 

  28. Kochen, S., Specken, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  29. Koopman, B.O.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315 (1931)

    Article  ADS  MATH  Google Scholar 

  30. Milman, V.D., Schechtman, G.: Asymptotic theory of Finite Dimensional Normed Spaces, Lecture notes in Mathematics 1200. Springer, Berlin (2001)

    Google Scholar 

  31. Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 8(5), 581 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Penrose, R.: The Road to Reality. Vintage, London (2005)

    MATH  Google Scholar 

  33. Randers, G.: On an asymmetrical metric in the four-space of general relativity. Phys. Rev. 59, 195 (1941)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Salart, D., Baas, A., Branciard, C., Gisin, N., Zbinden, H.: Testing the speed of ‘spooky action at a distance’. Nature 454, 861–864 (2008)

    Article  ADS  Google Scholar 

  35. Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Math. Ann. 63, 433 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  36. Smolin, L.: A real ensemble interpretation of quantum mechanics. Found. Phys. 42, 1239 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Snyder, H.S.: Quantized space-time. Phys. Rev. 71(1), 38–41 (1947)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. ’t Hooft, G.: The cellular automaton interpretation of quantum mechanics. In: Fundamental Theories in Physics, vol. 185, Springer, Berlin (2016)

  39. von Neumann, J.: Zur Operatorenmethode In Der Klassischen Mechanik. Ann. Math. 33(3), 587

  40. von Neumann, J.: Zusatze Zur Arbeit “Zur Operatorenmethode... Ann. Math. 33(4), 789 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  41. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1955)

    Google Scholar 

  42. Ying, J., et al.: Lower bound on the speed of nonlocal correlations without locality and measurement choice loopholes. Phys. Rev. Lett. 110, 260407 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Foundational Questions Institute (FQXi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Gallego Torromé.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torromé, R. Emergent Quantum Mechanics and the Origin of Quantum Non-local Correlations. Int J Theor Phys 56, 3323–3339 (2017). https://doi.org/10.1007/s10773-017-3498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3498-0

Keywords

  • Emergent quantum mechanics
  • Quantum correlations
  • Hidden variables