Abstract
A geometric interpretation for quantum correlations and entanglement according to a particular framework of emergent quantum mechanics is developed. The mechanism described is based on two ingredients: 1. At an hypothetical sub-quantum level description of physical systems, the dynamics has a regime where it is partially ergodic and 2. A formal projection from a two-dimensional time mathematical formalism of the emergent quantum theory to the usual one-dimensional time formalism of quantum dynamics. Observable consequences of the theory are obtained. Among them we show that quantum correlations must be instantaneous from the point of view of the spacetime description, but the spatial distance up to which they can be observed must be bounded. It is argued how our mechanism avoids Bell theorem and Kochen-Specken theorem. Evidence for non-signaling faster than the speed of light in our proposal is discussed.
This is a preview of subscription content, access via your institution.
References
Adler, S.L.: Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory. Cambridge University Press, Cambridge (2004)
Bancal, J.D., et al.: Quantum nonlocality based on finite-speed causal influences leads to superluminal signaling. Nat. Phys. 8, 867 (2012)
Bars, I.: Survey of Two-Time Physics. Class. Quantum Gravity 18, 3113–3130 (2001)
Bell, J.S.: On the Einstein-Podolski-Rosen paradox. Physica 1, 195 (1964)
Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)
Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. I. Phys. Rev. 85, 166–179 (1952) ; A suggested interpretation of the quantum theory in terms of hidden variables. II, Phys. Rev. 85, 180–193 (1952)
Bohm, D.: Wholeness and the Implicate Order. Routledge, London (1982)
Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)
Cocciaro, B., Faetti, S., Fronzoni, L.: Measurements of entanglement over a kilometric distance to test superluminal models of Quantum Mechanics: preliminary results. arXiv:1702.04697
Diósi, L.: Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 105, 199 (1984)
Diósi, L.: Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)
Dowker, F., Henson, J., Sorkin, R.: Quantum gravity phenomenology, Lorentz invariance and discreteness. Mod. Phys. Lett. A 19, 1829 (2004)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Elze, H.T.: Quantum models as classical cellular automata, arXiv:1701.02252
Elze, H.T.: Action principle for cellular automata and the linearity of quantum mechanics. Phys. Rev. A 89, 012111 (2014)
Fernandez de Cordoba, P., Isidro, J.M., Vazquez Molina, J.: The holographic quantum. Published in Found. Phys. 46(7), 787 (2016)
Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)
Gallego Torromé, R.: A finslerian version of. Gallego Torromé, A finslerian version of ’t Hooft Deterministic Quantum Models. J. Math. Phys. 47, 072101 (2006)
Gallego Torromé, R.: Emergence of classical gravity and the objective reduction of the quantum state in deterministic models of quantum mechanics. J. Phys. Conf. Ser. 626(1), 012073 (2015)
Gallego Torromé, R.: A theory of emergent quantum mechanics and emergent classical gravity, arXiv:1402.5070 [math-ph]
Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)
Ghirardi, G.C., Grassi, R., Rimini, A.: Continuous-spontaneous-reduction model involving gravity. Phys. Rev. A 42, 1057 (1990)
Gisin, N.: Can quantum entangled states collapse spontaneously? Phys. Lett. A 155, 445–449 (1991)
Gisin, N., Scarani, V., Tittel, W., Zbinden, H.: 100 years of Q theory. Proceedings, Ann. Phys. 9, 831 (2000)
Gromov, M.: Riemannian Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser, Cambridge (1999)
Grössing, G.: Emergence of quantum mechanics from a sub-quantum statistical mechanics. Int. J. Mod. Phys. B 28, 1450179 (2014)
Isham, C.: Lectures on Quantum Theory: Mathematical and Theoretical Foundations. Imperial College Press, London (1995)
Kochen, S., Specken, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)
Koopman, B.O.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315 (1931)
Milman, V.D., Schechtman, G.: Asymptotic theory of Finite Dimensional Normed Spaces, Lecture notes in Mathematics 1200. Springer, Berlin (2001)
Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 8(5), 581 (1996)
Penrose, R.: The Road to Reality. Vintage, London (2005)
Randers, G.: On an asymmetrical metric in the four-space of general relativity. Phys. Rev. 59, 195 (1941)
Salart, D., Baas, A., Branciard, C., Gisin, N., Zbinden, H.: Testing the speed of ‘spooky action at a distance’. Nature 454, 861–864 (2008)
Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Math. Ann. 63, 433 (1907)
Smolin, L.: A real ensemble interpretation of quantum mechanics. Found. Phys. 42, 1239 (2012)
Snyder, H.S.: Quantized space-time. Phys. Rev. 71(1), 38–41 (1947)
’t Hooft, G.: The cellular automaton interpretation of quantum mechanics. In: Fundamental Theories in Physics, vol. 185, Springer, Berlin (2016)
von Neumann, J.: Zur Operatorenmethode In Der Klassischen Mechanik. Ann. Math. 33(3), 587
von Neumann, J.: Zusatze Zur Arbeit “Zur Operatorenmethode... Ann. Math. 33(4), 789 (1932)
von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1955)
Ying, J., et al.: Lower bound on the speed of nonlocal correlations without locality and measurement choice loopholes. Phys. Rev. Lett. 110, 260407 (2013)
Acknowledgements
This work is supported by the Foundational Questions Institute (FQXi).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Torromé, R. Emergent Quantum Mechanics and the Origin of Quantum Non-local Correlations. Int J Theor Phys 56, 3323–3339 (2017). https://doi.org/10.1007/s10773-017-3498-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10773-017-3498-0
Keywords
- Emergent quantum mechanics
- Quantum correlations
- Hidden variables