Skip to main content

Quantum Cryptography Based on the Deutsch-Jozsa Algorithm

Abstract

Recently, secure quantum key distribution based on Deutsch’s algorithm using the Bell state is reported (Nagata and Nakamura, Int. J. Theor. Phys. doi:10.1007/s10773-017-3352-4, 2017). Our aim is of extending the result to a multipartite system. In this paper, we propose a highly speedy key distribution protocol. We present sequre quantum key distribution based on a special Deutsch-Jozsa algorithm using Greenberger-Horne-Zeilinger states. Bob has promised to use a function f which is of one of two kinds; either the value of f(x) is constant for all values of x, or else the value of f(x) is balanced, that is, equal to 1 for exactly half of the possible x, and 0 for the other half. Here, we introduce an additional condition to the function when it is balanced. Our quantum key distribution overcomes a classical counterpart by a factor O(2N).

This is a preview of subscription content, access via your institution.

References

  1. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, New Jersey (1955)

    MATH  Google Scholar 

  2. Feynman, R.P., Leighton, R.B., Sands, M.: Lectures on Physics, vol. III. Quantum mechanics. Addison-Wesley Publishing Company (1965)

  3. M. Redhead: Incompleteness, Nonlocality, and Realism, 2nd edn. Clarendon Press, Oxford (1989)

    Google Scholar 

  4. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht, The Netherlands (1993)

    MATH  Google Scholar 

  5. Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley Publishing Company, Revised ed (1995)

  6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

  7. Leggett, A.J.: Found. Phys. 33, 1469 (2003)

    MathSciNet  Article  Google Scholar 

  8. Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., żukowski, M., Aspelmeyer, M., Zeilinger, A.: Nature (London) 446, 871 (2007)

    ADS  Article  Google Scholar 

  9. Paterek, T., Fedrizzi, A., Gröblacher, S., Jennewein, T., żukowski, M., Aspelmeyer, M., Zeilinger, A.: Phys. Rev. Lett. 99, 210406 (2007)

    ADS  Article  Google Scholar 

  10. Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A., Scarani, V.: Phys. Rev. Lett. 99, 210407 (2007)

    ADS  Article  Google Scholar 

  11. Suarez, A.: Found. Phys. 38, 583 (2008)

    ADS  Article  Google Scholar 

  12. żukowski, M.: Found. Phys. 38, 1070 (2008)

    ADS  Article  Google Scholar 

  13. Suarez, A.: Found. Phys. 39, 156 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  14. Deutsch, D.: Proc. Roy. Soc. London Ser. A 400, 97 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  15. Deutsch, D., Jozsa, R.: Proc. Roy. Soc. London Ser. A 439, 553 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  16. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Proc. Roy. Soc. London Ser. A 454, 339 (1998)

    ADS  Article  Google Scholar 

  17. Jones, J.A., Mosca, M.: J. Chem. Phys. 109, 1648 (1998)

    ADS  Article  Google Scholar 

  18. Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Nature (London) 421, 48 (2003)

    ADS  Article  Google Scholar 

  19. de Oliveira, A.N., Walborn, S.P., Monken, C.H.: J. Opt. B: Quantum Semiclass. Opt. 7, 288–292 (2005)

    ADS  Article  Google Scholar 

  20. Kim, Y.-H.: Phys. Rev. A 67(R), 040301 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  21. Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Phys. Rev. Lett. 91, 187903 (2003)

    ADS  Article  Google Scholar 

  22. Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S., Zeilinger, A.: Phys. Rev. Lett. 98, 140501 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  23. Bernstein, E., Vazirani, U.: In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC ’93), pp 11–20 (1993), 10.1145/167088.167097

  24. Bernstein, E., Vazirani, U.: SIAM J. Comput. 26-5, 1411–1473 (1997)

    Article  Google Scholar 

  25. Simon, D.R.: Proceedings of the 35th Annual Symposium on Foundations of Computer Science: 116–123, retrieved 2011-06-06 (1994)

  26. Du, J., Shi, M., Zhou, X., Fan, Y., Ye, B.J., Han, R., Wu, J.: Phys. Rev. A 64, 042306 (2001)

    ADS  Article  Google Scholar 

  27. Brainis, E., Lamoureux, L.-P., Cerf, N.J., Emplit, P.h., Haelterman, M., Massar, S.: Phys. Rev. Lett. 90, 157902 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  28. Cross, A.W., Smith, G., Smolin, J.A.: Phys. Rev. A 92, 012327 (2015)

    ADS  Article  Google Scholar 

  29. Li, H., Yang, L.: Quantum Inf. Process. 14, 1787 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  30. Adcock, M.R.A., Hoyer, P., Sanders, B.C.: Quantum Inf. Process. 15, 1361 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  31. Fallek, S.D., Herold, C.D., McMahon, B.J., Maller, K.M., Brown, K.R., Amini, J.M.: New J. Phys. 18, 083030 (2016)

    ADS  Article  Google Scholar 

  32. Diep, D.N., Giang, D.H., Van Minh, N.: Quantum gauss-Jordan elimination and simulation of accounting principles on quantum computers. Int. J. Theor. Phys. (2017)

  33. Jin, W.: Quantum Inf. Process. 15, 65 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  34. Nagata, K., Nakamura, T.: Open Access Library Journal 2, e1798 (2015). doi:10.4236/oalib.1101798

    Google Scholar 

  35. Nagata, K., Nakamura, T.: Quantum cryptography, quantum communication, and quantum computer in a noisy environment. Int. J. Theor. Phys. (2017)

  36. Greenberger, D.M., Horne, M.A., Zeilinger, A.: In: Kafatos, M. (ed.): Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp 69–72. Kluwer Academic, Dordrecht, The Netherlands (1989)

  37. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Am. J. Phys. 58, 1131 (1990)

    ADS  Article  Google Scholar 

  38. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nagata.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagata, K., Nakamura, T. & Farouk, A. Quantum Cryptography Based on the Deutsch-Jozsa Algorithm. Int J Theor Phys 56, 2887–2897 (2017). https://doi.org/10.1007/s10773-017-3456-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3456-x

Keywords

  • Quantum computation architectures and implementations
  • Quantum algorithms, protocols, and simulations
  • Quantum cryptography