Skip to main content
Log in

Protecting Distribution Entanglement for Two-Qubit State Using Weak Measurement and Reversal

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Protection of entanglement from disturbance of the environment is an essential task in quantum information processing. We investigate the effect of the weak measurement and reversal (WMR) on the protection of the entanglement for an arbitrarily entangled two-qubit pure state from these three typical quantum noisy channels, i.e., amplitude damping channel, phase damping channel and depolarizing quantum channel. Given the parameters of the Bell-like initial qubits’ state |ψ〉 = a|00〉 + d|11〉, it is found that the WMR operation indeed helps for protecting distributed entanglement from the above three noisy quantum channels. But for the Bell-like initial qubits’ state |ϕ〉 = b|01〉 + c|10〉, the WMR operation only protects entanglement in the amplitude damping channel, not for the phase damping and depolarizing quantum channels. In addition, we discuss how the concurrence and the success probability behave with adjusting the weak or the reversal weak measurement strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, R.: Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. Almeida, M.P., et al.: Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  3. Wang, Q., Tan, M.Y., Liu, Y., Zeng, H.S.: J. Phys. B: At. Mol. Opt. Phys. 42, 125503 (2009)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  8. Berry, D.W., Sanders, B.C.: Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  9. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Phys. Rev. A 63, 042303 (2001)

    Article  ADS  Google Scholar 

  10. Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Phys. Rev. A 59, 4249 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Aharonov, Y., Albert, D.Z., Vaidman, L.: Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  12. Oreshkov, O., Brun, T.A.: Phys. Rev. Lett. 95, 110409 (2005)

    Article  ADS  Google Scholar 

  13. Korotkov, A.N., Keane, K.: Phys. Rev. A 81, 040103 (2010)

    Article  ADS  Google Scholar 

  14. Kim, Y.S., Cho, Y.W., Ra, Y.S., kim, Y.H.: Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

  15. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  16. Xiao, X., Li, Y.L.: Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  17. Ting, Y., Eberly, J.H.: Phys. Rev. Lett. 93, 140404 (2004)

    Article  Google Scholar 

  18. Yao, C, Ma, Z.H, Chen, Z.H, Serafini, A.: Phys. Rev. A 86, 022312 (2012)

    Article  ADS  Google Scholar 

  19. Ota, Y., Ashhab, S., Nori, F.: J. Phys. A: Math. Theor. 45, 415303 (2012)

    Article  Google Scholar 

  20. Pramanik, T., Majumdar, A.S.: Phys. Lett. A 377, 3209 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. He, Z., Yao, C., Zou, J.: Phys. Rev. A 88, 044304 (2013)

    Article  ADS  Google Scholar 

  22. Wang, Q., Yao, C.M.: Commun. Theor. Phys. 61, 464 (2014)

    Article  ADS  Google Scholar 

  23. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  24. Rivas, A., Huelga, S.F., Plenio, M.B.: Phys. Rev. Lett. 105, 050403 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grants No. 61605019 and No. 61505053), the Natural Science Foundation of Hunan Province, China (Grants No. 2015JJ6006, 2016JJ3015 and No. 2015JJ3092), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 15C0937, 16B177 and No. 16C0113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., He, Z. & Wang, Q. Protecting Distribution Entanglement for Two-Qubit State Using Weak Measurement and Reversal. Int J Theor Phys 56, 2813–2824 (2017). https://doi.org/10.1007/s10773-017-3448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3448-x

Keywords

Navigation