Skip to main content

(H,ρ)–Induced Political Dynamics: Facets of the Disloyal Attitudes Into the Public Opinion

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Johnson, P.E.: Formal theories of politics. Mathematical modelling in political science. Elsevier Ltd Pergamon (1989)

  2. 2.

    Lichtenegger, K., Hadzibeganovic, T.: The interplay of self–reflection, social interaction and random events in the dynamics of opinion flow in two–party democracies, Int. J. Mod. Phys. C, 27 (2012)

  3. 3.

    Misra, A.K.: A simple mathematical model for the spread of two political parties. Nonlin. Anal.: Model. Control 17, 343–354 (2012)

    MATH  MathSciNet  Google Scholar 

  4. 4.

    Sened, I.: A model of coalition formation: theory and evidence. J. Polit. 58, 350–372 (1996)

    Article  Google Scholar 

  5. 5.

    Khrennikov, A.: Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena. Ser.:Fundamental Theories of Physics. Kluwer, Dordreht (2004)

    Book  MATH  Google Scholar 

  6. 6.

    Khrennikov, A.: Ubiquitous Quantum Structure: from Psychology to Finances. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  7. 7.

    Haven, E., Khrennikov, A.: Quantum mechanics and violations of the sure–thing principle The use of probability interference and other concepts. J. Math. Psych. 53, 378–388 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. 8.

    Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  9. 9.

    Khrennikova, P., Haven, E., Khrennikov, A.: An application of the theory of open quantum systems to model the dynamics of party governance in the US political system. Int. J. Theor. Phys. 53, 1346–1360 (2014)

    Article  MathSciNet  Google Scholar 

  10. 10.

    Khrennikova, P.: Quantum dynamical modeling of competition and cooperation between political parties: the coalition and non–coalition equilibrium model. J. Math. Psychol. 71, 39–50 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Merzbacher, E.: Quantum mechanics. Wiley, New York (1970)

    MATH  Google Scholar 

  12. 12.

    Roman, P.: Advanced Quantum Mechanics. Addison–Wesley, New York (1965)

    Google Scholar 

  13. 13.

    Di Salvo, R., Oliveri, F.: On fermionic models of a closed ecosystem with application to bacterial populations, AAPP–Phys. Math. Nat. Sci., 94 (2016)

  14. 14.

    Bagarello, F., Di Salvo, R., Gargano, F., Oliveri, F.: (H,ρ)–induced dynamics and the quantum game of life. Appl. Math. Model. 43, 15–32 (2017)

    Article  MathSciNet  Google Scholar 

  15. 15.

    Bagarello, F., Di Salvo, R., Gargano, F., Oliveri, F.: (H,ρ)–dynamics and large time behaviors, Submitted (2016)

  16. 16.

    Bagarello, F.: Quantum Dynamics for Classical Systems: with Applications of the Number Operator. Wiley, New York (2012)

    Book  Google Scholar 

  17. 17.

    Bagarello, F., Oliveri, F.: An operator description of interactions between populations with applications to migration. Math. Mod. Meth. Appl. Sci. 23, 471–492 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. 18.

    Bagarello, F., Haven, E.: The role of information in a two–traders market. Phys. A: Stat. Mech. Appl. 404, 224–233 (2014)

    Article  MathSciNet  Google Scholar 

  19. 19.

    Bagarello, F., Haven, E.: Toward a formalization of a two traders market with information exchange, Phys. Scr., 90 (2014)

  20. 20.

    Bagarello, F., Oliveri, F.: Dynamics of closed ecosystems described by operators. Ecol. Model. 275, 89–99 (2014)

    Article  Google Scholar 

  21. 21.

    Bagarello, F., Gargano, F., Oliveri, F.: A phenomenological operator description of dynamics of crowds: escape strategies. Appl. Math. Model. 39, 2276–2294 (2015)

    Article  MathSciNet  Google Scholar 

  22. 22.

    Bagarello, F., Cherubini, A.M., Oliveri, F.: An operatorial description of desertification. SIAM J. Appl. Math. 76, 479–499 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  23. 23.

    Di Salvo, R., Oliveri, F.: An operatorial model for long–term survival of bacterial populations. Ricerche di Matematica 65, 435–447 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  24. 24.

    Bagarello, F.: An operator view on alliances in politics. SIAM J. Appl. Math. 75, 564–584 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  25. 25.

    Bagarello, F., Haven, E.: First results on applying a non–linear effect forMalism to alliances between political parties and buy and sell dynamics. Phys. A 444, 403–414 (2016)

    Article  MathSciNet  Google Scholar 

  26. 26.

    Di Salvo, R., Oliveri, F.: An operatorial model for complex political system dynamics. Math. Meth. Appl. Sci. (2017). doi:10.1002/mma.4417

  27. 27.

    Di Salvo, R., Gorgone, M., Oliveri, F.: Political dynamics affected by turncoats, Submitted (2016)

  28. 28.

    Asano, M., Ohya, M., Tanaka, Y., Basieva, I., Khrennikov, A.: Quantum–like model of brain’s functioning: decision making from decoherence. J. Theor. Biol. 281, 56–64 (2011)

    Article  MathSciNet  Google Scholar 

  29. 29.

    Asano, M., Ohya, M., Tanaka, Y., Basieva, I., Khrennikov, A.: Quantum–like dynamics of decision–making. Phys. A 391, 2083–2099 (2012)

    Article  MATH  Google Scholar 

  30. 30.

    Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Quantum Adaptivity in Biology: from Genetics to Cognition. Springer, Berlin (2015)

    MATH  Google Scholar 

Download references

Acknowledgments

The research was partially funded by the Ph.D. School in Mathematics and Computer Science of the University of Catania. The authors are grateful to the unknown referees whose comments and suggestions contributed to improve the quality of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesco Oliveri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salvo, R.D., Gorgone, M. & Oliveri, F. (H,ρ)–Induced Political Dynamics: Facets of the Disloyal Attitudes Into the Public Opinion. Int J Theor Phys 56, 3912–3922 (2017). https://doi.org/10.1007/s10773-017-3380-0

Download citation

Keywords

  • Fermionic operators
  • Political system dynamics
  • Turncoats
  • Voters’ opinions