Skip to main content
Log in

Protection of Quantum Correlations of a Two-Atom System in Dissipative Environments via Quantum-Jump-Based Feedback Control

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum correlations of two atoms independently coupled to their own environments under local quantum-jump-based feedback control are investigated. We analyze the dynamics of geometric measure of quantum discord (GMQD) and entanglement. Our results show that the protection of GMQD and entanglement strongly depends on quantum feedback parameters, initial atomic states and classical driving. We find that under the condition of designing proper quantum-jump-based feedback parameters, GMQD and entanglement can be protected. But, for a specific initial state, the evolution of entanglement is independent of the feedback parameter, while the evolution of GMQD relies on the chosen feedback parameter. The influence of classical driving on the evolution of quantum correlations is also explored. The results show that under appropriate feedback control, classical driving can protect GMQD for a period of time in the initial stage, but not for entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ollivier, H., Zurek, W.H.: Quantum discord: a measurement of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2000)

    Article  ADS  MATH  Google Scholar 

  2. Dakic, B., Vedarl, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  3. Sainz, I., Bjork, G.: Quantum error correction may delay, but also cause, entanglement sudden death. Phys. Rev. A 77, 052307 (2008)

    Article  ADS  Google Scholar 

  4. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306–3309 (1997)

    Article  ADS  Google Scholar 

  6. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)

    Article  ADS  Google Scholar 

  7. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces of quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    Article  ADS  Google Scholar 

  8. Maniscalco, S., Francisca, F., Zaffino, R., Gullo, N., Plastina, F.: Protecting entanglement via quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Francica, F., Plastina, F., Maniscalco, S.: Quantum Zeno and anti-Zeno effects on quantum and classical correlations. Phys. Rev. A 82, 052118 (2010)

    Article  ADS  Google Scholar 

  10. West, J.R., Lidar, D.A., Fong, B.H., Gyue, M.F.: Quantum fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010)

    Article  ADS  Google Scholar 

  11. Gong, Z.R., Yao, W.: Protecting dissipative quantum state preparation via dynamical decoupling. Phys. Rev. A 87, 032314 (2013)

    Article  ADS  Google Scholar 

  12. Cao, X., Zheng, H.: Non-markovian disentanglement dynamics of a two-qubit system. Phys. Rev. A 77, 022320 (2008)

    Article  ADS  Google Scholar 

  13. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  14. Zou, H.M., Fang, M.F.: Discord and entanglement in non-Markovain environments at finite temperatures. Chin. Phys. B 25, 090302 (2016)

    Article  ADS  Google Scholar 

  15. Li, J.G., Zou, J., Shao, B.: Entanglement backflow under the composite effect of two non-Markovian reservoirs. Phys. Lett. A 376, 1020–1024 (2010)

    Article  ADS  MATH  Google Scholar 

  16. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  17. Yune, J., Hong, K.H., Lim, H.T., Lee, J.C., Kwon, O., Han, S.W., Kim, Y.S., Moon, S., Kim, Y.H.: Quantum discord prtecting from amplitude damping decoherence. Opt. Express 23, 26012–26022 (2015)

    Article  ADS  Google Scholar 

  18. Wiseman, H.M., Milburn, G.J.: Quantum theory of opical feedback via homodyne detection. Phys. Rev. Lett. 70, 548–551 (1993)

    Article  ADS  Google Scholar 

  19. Wiseman, H.M.: Quantum theory of continuous feedback. Phys. Rev. A 49, 2133–2150 (1994)

    Article  ADS  Google Scholar 

  20. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  21. Katz, G., Ratner, M.A., Kosloff, R.: Decoherence control by tracking a Hamiltonian reference molecule. Phys. Rev. Lett. 98, 203006 (2007)

    Article  ADS  Google Scholar 

  22. Ganesan, N., Tarn, T.J.: Decoherence control in open quantum sysytem via classical feedback. Phys. Rev. A 75, 032323 (2007)

    Article  ADS  Google Scholar 

  23. Zhang, J., Li, C., Wu, R., Tarn, T., Liu, X.: Maximal suppression of decoherence in Markovian quantum systems. J. Phys. A 38, 6587–6601 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Wang, J., Wiseman, H.M., Milburn, G.J.: Dynamical creation of entanglement by homodyne-mediated feedback. Phys. Rev. A 71, 042309 (2005)

    Article  ADS  Google Scholar 

  25. Carvalho, A.R.R., Hope, J.J.: Stabilizing entanglement by quantum-jump-based feedback. Phys. Rev. A 76, 010301(R) (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Li, J.G., Zou, J., Shao, B., Cai, J.F.: Steady atomic entanglement with different quantum feedbacks. Phys. Rev. A 77, 012339 (2008)

    Article  ADS  Google Scholar 

  27. Carvalho, A.R.R., Reid, A.J.S., Hope, J.J.: Controlling entanglement by direct quantum feedback. Phys. Rev. A 78, 012334 (2008)

    Article  ADS  Google Scholar 

  28. Sun, H.Y., Shu, P.L., Li, C., Yi, X.X.: Feedback control on geometric phase in dissipative two-level systems. Phys. Rev. A 79, 022119 (2009)

    Article  ADS  Google Scholar 

  29. Wang, L.C., Huang, X.L., Yi, X.X.: Effect of feedback on the control of a two-level dissipative quantum system. Phys. Rev. A 78, 052112 (2008)

    Article  ADS  Google Scholar 

  30. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.J.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)

    Article  ADS  Google Scholar 

  31. Shao, X.Q., Zheng, T.Y., Zhang, S.: Engineering steady three atom singlet state via quantum-jump-based feedback. Phys. Rev. A 85, 042308 (2012)

    Article  ADS  Google Scholar 

  32. Shao, X.Q., Wang, Z.H., Liu, H.D., Yi, X.X.: Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control. Phys. Rev. A 94, 032307 (2016)

    Article  ADS  Google Scholar 

  33. Sun, W.M., Su, S.L., Jin, Z., Liang, Y., Zhu, A.D., Wang, H.F., Zhang, S.: Dissipative preparation of three-atom entanglement state via quantum feedback control. J. Opt. Soc. Am. B 32, 1873–1880 (2015)

    Article  ADS  Google Scholar 

  34. Chen, L., wang, H.F., Zhang, S.: Entanglement dynamics of three atoms under quantum-jump-based control. J. Opt. Soc. Am. B 30, 475–481 (2013)

    Article  ADS  Google Scholar 

  35. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  36. Bellomo, B., Franco, R.Lo., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos.11374096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Fa Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Fang, MF. Protection of Quantum Correlations of a Two-Atom System in Dissipative Environments via Quantum-Jump-Based Feedback Control. Int J Theor Phys 56, 1937–1947 (2017). https://doi.org/10.1007/s10773-017-3339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3339-1

Keywords

Navigation