International Journal of Theoretical Physics

, Volume 56, Issue 3, pp 863–873 | Cite as

Quantum Samaritan’s Dilemma Under Decoherence

Article

Abstract

We study how quantum noise affects the solution of quantum Samaritan’s dilemma. Serval most common dissipative and nondissipative noise channels are considered as the model of the decoherence process. We find that the solution of quantum Samaritan’s dilemma is stable under the influence of the amplitude damping, the bit flip and the bit-phase flip channel.

Keywords

Quantum game Noise channel Nash equilibrium 

References

  1. 1.
    Myerson, R.B.: Game theory: Analysis of conflict. Havard University Press, Boston (1991)MATHGoogle Scholar
  2. 2.
    Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47, 2543 (2000)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Benjamin, S.C., Hayden, P.M.: Comment on “Quantum Games and Quantum Strategies”. Phys. Rev. Lett. 87, 069801 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Benjamin, S.C., Hayden, P.M.: Multiplayer quantum games. Phys. Rev. A 64, 030301 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Khan, S., Khan, M.K.: Relativistic quantum games in noninertial frames. J. Phys. A - Math. Theor. 44, 355302 (2011)ADSCrossRefMATHGoogle Scholar
  7. 7.
    Situ, H.Z.: A quantum approach to play asymmetric coordination games. Quant. Inf. Process. 13, 591 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fra̧ckiewicz, P.: A new quantum scheme for normal-form games. Quant. Inf. Process. 14, 1809 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Fra̧ckiewicz, P.: Remarks on quantum duopoly schemes. Quant. Inf. Process. 15, 121 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Weng, G.F., Yu, Y.: Playing quantum games by a scheme with pre- and post-selection. Quant. Inf. Process. 15, 147 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Khan, S., Khan, M.K.: Quantum Stackelberg duopoly in a noninertial frame. Chinese Phys. Lett. 28, 070202 (2011)CrossRefGoogle Scholar
  12. 12.
    Fra̧ckiewicz, P.: Quantum signaling game. J. Phys. A - Math. Theor. 47, 305301 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fra̧ckiewicz, P., Sładkowski, J.: Quantum information approach to the ultimatum game. Int. J. Theor. Phys. 53, 3248 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fra̧ckiewicz, P.: On signaling games with quantum chance move. J. Phys. A - Math. Theor. 48, 075303 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Anand, N., Benjamin, C.: Do quantum strategies always win?. Quant. Inf. Process. 14, 4027 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Iqbal, A., Abbott, D.: Quantum matching pennies game. J. Phys. Soc. Jpn. 78, 014803 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Brunner, N., Linden, N.: Connection between Bell nonlocality and Bayesian game theory. Nat. Commun. 4, 2057 (2013)ADSGoogle Scholar
  18. 18.
    Iqbal, A., Chappell, J.M., Li, Q., Pearce, C.E.M., Abbott, D.: A probabilistic approach to quantum Bayesian games of incomplete information. Quant. Inf. Process. 13, 2783 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Pappa, A., Kumar, N., Lawson, T., Santha, M., Zhang, S.Y., Diamanti, E., Kerenidis, I.: Nonlocality and conflicting interest games. Phys. Rev. Lett. 114, 020401 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Iqbal, A., Chappell, J.M., Abbott, D.: Social optimality in quantum Bayesian games. Phys. A 436, 798 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Situ, H.Z.: Quantum Bayesian game with symmetric and asymmetric information. Quant. Inf. Process. 14, 1827 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Situ, H.Z.: Two-player conflicting interest Bayesian games and Bell nonlocality. Quant. Inf. Process. 15, 137 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Situ, H.Z., Huang, Z.M.: Relativistic quantum Bayesian game under decoherence. Int. J. Theor. Phys. 55, 2354 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Khan, S., Ramzan, M., Khan, M.K.: Decoherence effects on multiplayer cooperative quantum games. Commun. Theor. Phys. 56, 228 (2011)CrossRefMATHGoogle Scholar
  25. 25.
    Fra̧ckiewicz, P.: N-person quantum Russian roulette. Phys. A 401, 8 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Liao, X.P., Ding, X.Z., Fang, M.F.: Improving the payoffs of cooperators in three-player cooperative game using weak measurements. Quant. Inf. Process. 14, 4395 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Situ, H.Z., Zhang, C., Yu, F.: Quantum advice enhances social optimality in three-party conflicting interest games. Quantum Inf. Comput. 16, 588 (2016)MathSciNetGoogle Scholar
  28. 28.
    Alonso-Sanz, R.: A quantum battle of the sexes cellular automaton. P. Roy. Soc. A - Math. Phy. 468, 3370 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Alonso-Sanz, R.: On a three-parameter quantum battle of the sexes cellular automaton. Quant. Inf. Process. 12, 1835 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Alonso-Sanz, R.: A quantum prisoner’s dilemma cellular automaton. P. Roy. Soc. A - Math. Phy. 470, 20130793 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Alonso-Sanz, R.: Variable entangling in a quantum prisoner’s dilemma cellular automaton. Quant. Inf. Process. 14, 147 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Alonso-Sanz, R.: A cellular automaton implementation of a quantum battle of the sexes game with imperfect information. Quant. Inf. Process. 14, 3639 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Ozdemir, S.K., Shimamura, J., Morikoshi, F., Imoto, N.: Dynamics of a discoordination game with classical and quantum correlations. Phys. Lett. A 333, 218 (2004)ADSCrossRefMATHGoogle Scholar
  34. 34.
    Flitney, A.P., Abbott, D.: Quantum games with decoherence. J. Phys. A: Math. Gen. 38, 449 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Nawaz, A., Toor, A.H.: Quantum games with correlated noise. J. Phys. A: Math. Gen. 39, 9321 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Khan, S., Ramzan, M., Khan, M.K.: Quantum Stackelberg duopoly in the presence of correlated noise. J. Phys. A: Math. Theor. 43, 375301 (2010)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Khan, S., Khan, M.K.: Noisy relativistic quantum games in noninertial frames. Quant. Inf. Process. 12, 1351 (2013)ADSCrossRefMATHGoogle Scholar
  38. 38.
    Ramzan, M.: Three-player quantum Kolkata restaurant problem under decoherence. Quant. Inf. Process 12, 577 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Ramzan, M., Khan, M.K.: Environment-assisted quantum minority games. Fluct. Noise Lett. 12, 1350025 (2013)CrossRefGoogle Scholar
  40. 40.
    Gawron, P., Kurzyk, D., Pawela, L.: Decoherence effects in the quantum qubit flip game using Markovian approximation. Quant. Inf. Process. 13, 665 (2014)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Huang, Z.M., Qiu, D.W.: Quantum games under decoherence. Int. J. Theor. Phys. 55, 965 (2016)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Economics and ManagementWuyi UniversityJiangmenChina
  2. 2.Technical University of Madrid, ETSIA (Estadística, GSC). C.UniversitariaMadridSpain
  3. 3.College of Mathematics and InformaticsSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations