Skip to main content
Log in

Quantum Correlation Properties in Two Qubits One-axis Spin Squeezing Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the concurrence (C) and quantum discord (QD) criterions, the quantum correlation properties in two qubits one-axis spin squeezing model with an external magnetic field are investigated. It is found that one obvious difference in the limit case T → 0 (ground state) is the sudden disappearance phenomenon (SDP) occured in the behavior of C, while not in QD. In order to further explain the SDP, we obtain the analytic expressions of ground state C and QD which reveal that the SDP is not really “entanglement sudden disappeared”, it is decayed to zero very quickly. Proper tuning the parameters μ(the spin squeezing interaction in x direction) and Ω(the external magnetic field in z direction) not only can obviously broaden the scope of ground state C exists but also can enhance the value of ground state QD. For the finite temperature case, one evident difference is that the sudden birth phenomenon (SBP) is appeared in the evolution of C, while not in QD, and decreasing the coupling parameters μ or Ω can obviously prolong the time interval before entanglement sudden birth. The value of C and QD are both enhanced by increasing the parameters μ or Ω in finite temperature case. In addition, through investigating the effects of temperature T on the quantum correlation properties with the variation of Ω and μ, one can find that the temperature scope of C and QD exists are broadened with increasing the parameters μ or Ω, and one can obtain the quantum correlation at higher temperature through changing these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Werner, R.F.: Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  2. Hill, S., Wootters, W.K.: Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  3. Peres, A.: Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wooters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum computation and Quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  7. Bennett, C.H., Bernstein, H.J.: Phys. Rev. A 56, R3319 (1997)

    Article  Google Scholar 

  8. Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  10. Luo, S.: Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  11. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  12. Henderson, L., Vedral, V.: J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dakic, B., Vedral, V., Brukner, C.: Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  14. Luo, S., Fu, S.: Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. Luo, S., Fu, S.: Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  16. Kane, B.E.: Nature 133, 393 (1998)

    Google Scholar 

  17. Sorensen, A., Duan, L.M., Cirac, J.I., Zoller, P.: Nature 63, 409 (2001)

    Google Scholar 

  18. Sun, Z., Wang, X.G., Sun, C.P.: Phys. Rev. A 75, 052317 (2007)

    Article  ADS  Google Scholar 

  19. Liu, W.M., Fan, W.B., Zheng, W.M., Liang, J.Q., Chui, S.T.: Phys. Rev. Lett. 88, 170408 (2002)

    Article  ADS  Google Scholar 

  20. Zhou, L., Song, H.S., Guo, Y.Q., Li, C.: Phys. Rev.A 68, 024301 (2003)

    Article  ADS  Google Scholar 

  21. Zhang, G.F., Li, S.S.: Phys. Rev.A 72, 034302 (2005)

    Article  ADS  Google Scholar 

  22. Werlang, T., Rigolin, G.: Phys. Rev.A 81, 044101 (2010)

    Article  ADS  Google Scholar 

  23. Wang, X.: Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  24. Kastoryano, M.J., Reiter, F., Rensen, A.S.S.: Phys. Rev. Lett. 106, 090502 (2011)

    Article  ADS  Google Scholar 

  25. Kitagawa, M., Ueda, M.: Phys. Rev.A 47, 5138 (1993)

    Article  ADS  Google Scholar 

  26. Sanders, B.C.: Phys. Rev. A 40, 2417 (1989)

    Article  ADS  Google Scholar 

  27. Wang, C.Z., Li, C.X., et al.: J. Phys. A, Math. Theor. 44, 015503 (2011)

    Google Scholar 

  28. Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Wootters, W.K.: Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. Hill, S., Wootters, W.K.: Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  30. Maldonado-Trapp, A., Hu, A., Roa, L.: Quantum Inf. Process 14, 1947 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

This project was supported by the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2012021003-3) and the special funds of the National Natural Foundation of China (Grant No. 11247247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Guo-Hui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo-Hui, Y. Quantum Correlation Properties in Two Qubits One-axis Spin Squeezing Model. Int J Theor Phys 56, 600–608 (2017). https://doi.org/10.1007/s10773-016-3201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3201-x

Keywords

Navigation