Skip to main content
Log in

The Tunneling Radiation from Non-Stationary Spherical Symmetry Black Holes and the Hamilton-Jacobi Equation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We derive the Hamilton-Jacobi equation from the Dirac equation, then, with the help of the Hamilton-Jacobi equation, the the tunneling radiation behavior of the non-stationary spherical symmetry de Sitter black hole is discussed, at last, we obtained the tunneling rate and Hawking temperature. Our results showed that the Hamilton-Jacobi equation is a fundamental dynamic equation, it can widely be derived from the dynamic equations which describe the particles with any spin. Therefore, people can easy calculate the tunneling behavior from the black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoci, S., Liebscher, D.E.: Astron. Nachr. 322, 137 (2001). doi:10.1002/1521-3994(200107)322:3%3C137::AID-ASNA137%3E3.0.CO;2-1s

    Article  ADS  MathSciNet  Google Scholar 

  2. Kerr, R.P.: Phys. Rev. Lett. 11, 237 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  3. Warren, R.B., Judith, G.C., Margaret, J.G., Scott, J.K.: Astrophys. J 9, 32 (2013). doi:10.1088/0004-637X/775/1/32 10.1088/0004-637X/775/1/32

    Google Scholar 

  4. Collaboration, L.S, Virgo, C., Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., et al.: Phys. Rev. Lett. 116, 061102 (2016). doi:10.1103/PhysRevLett.116.061102

    Article  ADS  Google Scholar 

  5. Martí-Vidal, I., Muller, S., Vlemmings, W., Horellou, C., Aalto, S.: Science 348, 311 (2015). doi:10.1126/science.aaa1784

    Article  ADS  Google Scholar 

  6. Balick, B., Brown, R.: Astrophys. J. 194, 265 (1974). doi:10.1086/153242

    Article  ADS  Google Scholar 

  7. Balick, B., Brown, R.: Astrophys. J. 586, L127 (2003). doi:10.1086/374804

    Article  Google Scholar 

  8. Baganoff, F.K., Bautz, M.W., Brandt, W.N., Chartas, G., Feigelson, E.D., Garmire, G.P., et al: Nature 413, 45 (2001). doi:10.1038/35092510

    Article  ADS  Google Scholar 

  9. Genzel, R., Schoedel, R., Ott, T., Eckart, A., Alexander, T., Lacombe, F., et al.: Nature 425, 934 (2003). doi:10.1038/nature02065

    Article  ADS  Google Scholar 

  10. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975). doi:10.1007/BF02345020

    Article  ADS  Google Scholar 

  11. Zhang, Z., Zhao, J.: Phys. Lett. B 618, 14 (2005). doi:10.1016/j.physletb.2005.05.024

    Article  ADS  MathSciNet  Google Scholar 

  12. Li, H.L., Lin, R.: Gen. Relativ. Gravit. 46, 1661 (2014). doi:10.1007/s10714-011-1169-7

    Article  Google Scholar 

  13. Kerner, R., Mann, R.B.: Phys. Lett. B 665, 277 (2008). doi:10.1016/j.physletb.2008.06.012

    Article  ADS  MathSciNet  Google Scholar 

  14. Feng, Z.W., Zhang, L., Zu, X.T.: Mod. Phys. Lett. A 29, 1450123 (2014). doi:doi:10.1142/S0217732314501235 10.1142/S0217732314501235

    Article  ADS  Google Scholar 

  15. Kruglov, S.I.: Int. J. Mod. Phys. A 29, 1450118 (2014). doi:10.1142/S0217732314502034

    Article  ADS  Google Scholar 

  16. Deng, G.M.: Gen. Relativ. Gravit 46, 1757 (2014). doi:10.1007/s10714-014-1757-4

    Article  ADS  Google Scholar 

  17. Wu, S.Q., Deng, G.M., Wu, D.: Astrophys. Space Sci 352, 751 (2014). doi:10.1007/s10509-014-1980-1

    Article  ADS  Google Scholar 

  18. Feng, Z.W., Chen, Y., Zu, X.T.: Astrophys. Space Sci 48, 359 (2015). doi:10.1007/s10509-015-2498-x

    Google Scholar 

  19. Feng, Z.W., Li, H.L., Zu, X.T., Yang, S.Z.: Eur. Phys. J. C 76, 212 (2016). doi:10.1140/epjc/s10052-016-4057-1 10.1140/epjc/s10052-016-4057-1

    Article  ADS  Google Scholar 

  20. Yang, S.Z., Jiang, Q.Q.: Int. J. Theor. Phys. 46, 2138 (2007). doi:10.1007/s10773-006-9334-6

    Article  Google Scholar 

  21. Yang, S.Z., Li, H.L., Jiang, Q.Q.: Int. J. Theor. Phys. 45, 965 (2007). doi:10.1007/s10773-006-9092-5

    Article  Google Scholar 

  22. Feng, Z.W., Yang, S.Z., Li, H.L., Zu, X.T.: Adv. High Energy Phys. 2016, 2341879 (2016). doi:10.1155/2016/2341879

    Article  Google Scholar 

  23. Adler, R.J., Chen, P., S.D., I.: Gen. Relativ. Gravit 33, 2101 (2001). doi:10.1023/A:1015281430411

    Article  ADS  Google Scholar 

  24. Banerjee, R., Majhi, B.R.: Phys. Lett. B 662, 62 (2008). doi:10.1016/j.physletb.2008.02.044

    Article  ADS  MathSciNet  Google Scholar 

  25. Ali, A.F.: Phys. Rev. D 89, 104040 (2014). doi:10.1103/PhysRevD.89.104040

    Article  ADS  Google Scholar 

  26. Duff, M.J., Nilsson, P.C.N.: B. E. W., Phys. Rep. 130, 1 (1986). doi:10.1016/0370-1573(86)90163-8

    Article  ADS  Google Scholar 

  27. Lü, H., Pang, Y., Pope, C.N.: JHEP 14, 28 (2014). doi:10.1007/JHEP04(2014)175

    Google Scholar 

  28. Wu, D., W.S., Q., Yang, S.Z: Sci. Chin. 60, 3345 (2014). doi:10.1007/JHEP04(2014)175

    Google Scholar 

  29. Yang, S.Z., L. K.: Sci. Sin. 40, 507 (2010). doi:10.1103/PhysRevD.73.069902

    Google Scholar 

  30. Jiang, Q.Q., Wu, S.Q., Cai, X.: Phys. Rev. D 73, 064003 (2006). doi:10.1103/PhysRevD.73.069902

    Article  ADS  MathSciNet  Google Scholar 

  31. Chen, D.Y., Li, Z.H.: Adv. High Energy Phys. 2014, 620157 (2014). doi:10.1155/2014/620157

    Article  Google Scholar 

  32. Bonnor, W.B., Vaidya, P.C.: Gen. Relativ. Gravit 1, 127 (1970). doi:10.1007/BF00756891

    Article  ADS  Google Scholar 

  33. Patino, A., Rago, H.: Phys. Lett. A 121, 239 (1987). doi:10.1016/0375-9601(87)90299-4

    Article  Google Scholar 

  34. Feng, Z.W., Deng, J., Li, G.P., Yang, S.Z.: Int. J. Theor. Phys 51, 3214 (2012). doi:10.1007/s10773-012-1202-y 10.1007/s10773-012-1202-y

    Article  Google Scholar 

  35. Lin, K., Yang, S.Z.: Chi. Phys. Lett. 26, 010401 (2009). doi:10.1088/0256-307X/26/1/010401

    Article  ADS  Google Scholar 

  36. Feng, Z.W., Li, G.P., Zhang, Y., Zu, X.T.: Int. J. Theor. Phys. 54, 604 (2015). doi:10.1007/s10773-014-2253-z 10.1007/s10773-014-2253-z

    Article  Google Scholar 

  37. Lin, K., Yang, S.Z.: Phys. Rev. D 79, 064035 (2009). doi:10.1103/PhysRevD.79.064035

    Article  ADS  Google Scholar 

  38. Lin, K., Yang, S.Z.: Phys. Lett. B 674, 127 (2009). doi:10.1016/j.physletb.2009.02.055

    Article  ADS  MathSciNet  Google Scholar 

  39. Yang, S.Z.: J. Chin. West Normal Univ. (Nat. Sci.) 37, 126 (2016)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (Grant No. 11573022). The authors would also like to thank anonymous referees for enlightening comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Zheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SZ., Feng, ZW. & Li, HL. The Tunneling Radiation from Non-Stationary Spherical Symmetry Black Holes and the Hamilton-Jacobi Equation. Int J Theor Phys 56, 546–553 (2017). https://doi.org/10.1007/s10773-016-3196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3196-3

Keywords

Navigation