Skip to main content
Log in

Optimal Protection of Quantum Coherence in Noisy Environment

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we analyse the quantum coherence dynamics of a single qubit locally interacting with a zero-temperature reservoir. We compare the behaviors of quantum coherence in Markovian and non-Markovian regime. We find that the system coherence is transferred to the reservoir and decreases with time. In non-Markovian regime, quantum coherence exists instantaneous disappearance at some discrete time points. Furthermore, we propose an optimal scheme to protect quantum coherence by executing prior weak measurement and post-measurement reversal. It is worth noticing that the scheme can get better quantum coherence with the larger weak measurement strength, while at the cost of reducing success probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Scully, M.O.: Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett. 67, 1855 (1991)

    Article  ADS  Google Scholar 

  4. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge, England (1995)

    Book  Google Scholar 

  5. Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)

    Article  ADS  Google Scholar 

  6. Vogel, W., Sperling, J.: Unified quantification of nonclassicality and entanglement. Phys. Rev. A 89, 052302 (2014)

    Article  ADS  Google Scholar 

  7. Mraz, M., Sperling, J., Vogel, W., Hage, B.: Witnessing the degree of nonclassicality of light. Phys. Rev. A 90, 03382 (2014)

    Article  Google Scholar 

  8. Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., LutzNanoscale, E.: Heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  9. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  Google Scholar 

  10. Correa, L.A., Palao, J.P., Alonso, D., Adesso, G.: Quantum-enhanced absorption refrigerators. Sci. Rep. 4, 3949 (2014)

    Article  ADS  Google Scholar 

  11. Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)

    Article  ADS  Google Scholar 

  12. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  13. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, England (2000)

    MATH  Google Scholar 

  14. Baumgratz, T., Cramer, M., Plenio, M.B.: Quanfifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  15. Deveaud-Plédran, B., Quattropani, A., Schwendimann, P.: Quantum coherence in solid state systems. In: Proceedings of the International School of Physics Enrico Fermi. ISBN: 978-1-60750-039-1, vol. 171. IOS Press, Amsterdam (2009)

  16. Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: From solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    ADS  Google Scholar 

  17. Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Manc̆al, T., Cheng, Y.C., Blakenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature (London) 446, 782 (2007)

    Article  ADS  Google Scholar 

  18. Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008)

    Article  ADS  Google Scholar 

  19. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009)

    Article  ADS  Google Scholar 

  20. Caruso, F., Chin, A., Datta, A., Huelga, S., Plenio, M.: Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport. J. Chem. Phys. 131, 105106 (2009)

    Article  ADS  Google Scholar 

  21. Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature (London) 463, 644 (2010)

    Article  ADS  Google Scholar 

  22. Scholes, G.D., Fleming, G.R., Olaya-Castro, A., van Grondelle, R.: Lessons from nature about solar light harvesting. Nat. Chem. 3, 763 (2011)

    Article  Google Scholar 

  23. Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)

    Article  Google Scholar 

  24. Chin, A.W., Prior, J., Rosenbach, R., Caycedo-Soler, F., Huelga, S.F., Plenio, M.B.: The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigmentCprotein complexes. Nat. Phys. 9, 113 (2013)

    Article  Google Scholar 

  25. Cai, J., Plenio, M.B.: Chemical compass model for avian magnetoreception as a quantum coherent device. Phys. Rev. Lett. 111, 230503 (2013)

    Article  ADS  Google Scholar 

  26. O’Reilly, E.J., Olaya-Castro, A.: Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat. Commun. 5, 3012 (2014)

    Google Scholar 

  27. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    Article  ADS  Google Scholar 

  28. Girolami, D.: Observable measure of Quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  29. Smyth, C., Scholes, G.D.: Method of developing analytical multipartite delocalization measures for mixed W-like states. Phys. Rev. A 90, 032312 (2014)

    Article  ADS  Google Scholar 

  30. Pires, D.P., Celeri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015)

    Article  ADS  Google Scholar 

  31. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  34. Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)

    Article  ADS  Google Scholar 

  35. Chanda, T., Bhattacharya, S.: Delineating incoherent non-Markovian dynamics using quantum coherence. Ann. Phys. 366, 1 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kwiat, P.G., Barraza-Lopez, S., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ’hidden’ non-locality. Nature 409, 1014 (2001)

    Article  ADS  Google Scholar 

  37. Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature (London) 423, 417 (2003)

    Article  ADS  Google Scholar 

  38. Dong, R., et al.: Experimental entanglement distillation of mesoscopic quantum states. Nat. Phys. 4, 919 (2008)

    Article  Google Scholar 

  39. Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Kondo, Y., Matsuzaki, Y., Matsushima, K., Filgueiras, J.G.: Using the quantum Zeno effect for suppression of decoherence. New. J. Phys. 18, 013033 (2016)

    Article  ADS  Google Scholar 

  41. Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherencefree subspaces. Science 290, 498 (2000)

    Article  ADS  Google Scholar 

  42. Qin, W., Wang, C., Zhang, X.: Protected quantum-state transfer in decoherence-free subspaces. Phys. Rev. A 91, 042303 (2015)

    Article  ADS  Google Scholar 

  43. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  44. He, J., Ye, L.: Protecting entanglement under depolarizing noise environment by using weak measurements. Physica A 419, 7 (2015)

    Article  ADS  Google Scholar 

  45. He, J., Xu, S., Ye, L.: Inducing multipartite entanglement revival in dissipative environment by means of prior quantum uncollapsing measurements. Physica A 438, 66 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  46. Xu, S., He, J., Song, X.K., Shi, J.D., Ye, L.: Optimized decoherence suppression of two qubits in independent non-Markovian environments using weak measurement and quantum measurement reversal. Quantum Inf. Process. 14, 755 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Zhang, Y.J., Han, W., Fan, H., Xia, Y.J.: Enhancing entanglement trapping by weak measurement and quantum measurement reversal. Ann. Phys. 354, 203 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  48. He, J., Ding, Z.Y., Ye, L.: Enhancing quantum Fisher information by utilizing uncollapsing measurements. Physica A 457, 598 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  49. Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian Effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  50. Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  51. Wang, B., Xu, Z.Y., Chen, Z.Q., Feng, M.: Non-markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)

    Article  ADS  Google Scholar 

  52. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford, New York (2002)

  53. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  54. Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  55. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61502179), the Natural Science Foundation of Guangdong Province of China (Grant No. 2014A030310265), and the Science Foundation for Young Teachers of Wuyi University (Grant No. 2015zk01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Situ, H. Optimal Protection of Quantum Coherence in Noisy Environment. Int J Theor Phys 56, 503–513 (2017). https://doi.org/10.1007/s10773-016-3192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3192-7

Keywords

Navigation