Skip to main content

Unitary Quantum Relativity

(Work in Progress)


A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.

This is a preview of subscription content, access via your institution.


  1. Birkhoff, G., Von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  2. Einstein, A., Bargmann, V.: Bivector Fields i,II, vol. 45 (1944)

  3. Feynman, R.P.: Personal communication of 1961 about work of 1941

  4. Finkelstein, D.: Space-time code. Phys. Rev. 184, 1261–1271 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Finkelstein, D.: Space-time structure in high energy interactions. In: Gudehus, T., Kaiser, G., Perlmutter, A. (eds.) Fundamental Interactions at High Energy , pp 324–338. Gordon & Breach, New York (1969)

    Google Scholar 

  6. Finkelstein, D.: Quantum Relativity. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  7. Finkelstein, D.: Modular architecture of isospin and color. arXiv:1412.6498 (2014)

  8. Fock, V.A.: Foundations of Quantum Mechanics. 1st Edn. Moscow. (1931). 2nd edition, Mir, Moscow (1978)

  9. Hogan, C.J.: Directional Entanglement of Quantum Fields with Quantum Geometry. arXiv:1312.7798v6[gr-qc]21 Aug 2014

  10. Kleinert, H.: Gravity as theory of defects in a crystal with only Second-Gradient elasticity. Ann. d. Physik 44, 117 (1987)

    Article  ADS  Google Scholar 

  11. Kozo-Polyansky, B.M. In: Margulis, L. (ed.) : V. Fet (Translator), Peter H. Raven (Introduction). Symbiogenesis: A New Principle of Evolution. Harvard University Press (2010)

  12. Lieb, E.H.: Classical limit of quantum spin systems. Commun. Math. Phys. 31, 327–340 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Margulis, L., Sagan, D.: Acquiring Genomes: A theory of the origin of species. Basic books (2002)

  14. Palev, T.D.: Lie algebraical aspects of the quantum statistics. Unitary quantization (A-quantization). Joint Institute for Nuclear Research Preprint JINR E17-10550. Dubna (1977). hep-th/9705032

  15. Palev, T.D., Van der Jeugt, J.: Jacobson generators, Fock representations and statistics of s l(n+1). J. Math. Phys. 43, 3850–3873 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Penrose, R.: Angular momentum: an approach to combinatorial space-time. In: Bastin, T. (ed.) Quantum Theory and Beyond. Penrose kindly shared much of this seminal work with me ca 1960, long before publication, pp 151–180, Cambridge (1971)

  17. Saller, H.: Gauge fields as bound states of subcanonical fermion fields. Il Nuovo Cimento A Series 11(24), 391 (1974)

    Article  ADS  Google Scholar 

  18. Saller, H.: Operational Quantum Theory I. Nonrelativistic Structures. Springer, New York (2006a)

    MATH  Google Scholar 

  19. Schwartz, J.T., Dewar, R.B.K.: Programming With Sets: An Introduction to Setl. Springer (1986). ISBN 978-0-387-96399-0

  20. Segal, I.E.: A class of operator algebras which are determined by groups. Duke Mathematical Journal 18, 221–265 (1951). Especially Section 6A

    Article  MathSciNet  MATH  Google Scholar 

  21. Simon, H.: The architecture of complexity. Proc. Am. Philos. Soc. 106, 6 (1962)

    Google Scholar 

  22. Snyder, H.P.: Quantized space-time. Phys. Rev. 71, 38 (1947)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Stückelberg, E.C.G.: Quantum theory in real Hilbert space. Helv. Phys. Acta 33, 727–752 (1960)

    MathSciNet  Google Scholar 

  24. Takeuti, G.: Quantum set theory. In: Beltrametti, E. (ed.) Current Issues in Quantum Logic, p 303322. Plenum (1981)

  25. von Neumann, J.: Eine Axiometisierung der Mengenlehre, vol. 154. Also in J. von Neumann, Collected Works, volume 1, page 35 (1925)

  26. von Neumann, J.: Mathematische Grundlagen Der Quantenmechanik. Springer, Berlin (1932). Translated by R. T. Beyer as Mathematical Foundations of Quantum Mechanics, Princeton (1955)

    MATH  Google Scholar 

  27. Von Neumann, J., Halperin, I.: Continuous Geometries with a Transition Probability Memoirs of the American Mathematical Society, vol. 252. American Mathematical Society, Providence, R.I. (1981)

    Google Scholar 

  28. Weinberg, S.: The quantum theory of fields volume 1: Foundations (2005)

  29. Weinberg, S.: The quantum theory of fields volume 2: Modern applications (2005)

  30. Yang, C.N.: On quantized space-time. Phys. Rev. 72, 874 (1947)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references


S. Alexander, G. D’Ariano, G. F. R. Ellis, S. R. Finkelstein, and H. Saller provided helpful discussions and information. FQXi, the Templeton Foundation, and Dartmouth College supported presentations of this work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David Ritz Finkelstein.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finkelstein, D.R. Unitary Quantum Relativity. Int J Theor Phys 56, 2–39 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Quantum theory
  • Spacetime