Unitary Quantum Relativity

(Work in Progress)
  • David Ritz FinkelsteinEmail author


A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.


Quantum theory Spacetime 



S. Alexander, G. D’Ariano, G. F. R. Ellis, S. R. Finkelstein, and H. Saller provided helpful discussions and information. FQXi, the Templeton Foundation, and Dartmouth College supported presentations of this work.


  1. 1.
    Birkhoff, G., Von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823 (1936)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Einstein, A., Bargmann, V.: Bivector Fields i,II, vol. 45 (1944)Google Scholar
  3. 3.
    Feynman, R.P.: Personal communication of 1961 about work of 1941Google Scholar
  4. 4.
    Finkelstein, D.: Space-time code. Phys. Rev. 184, 1261–1271 (1969)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Finkelstein, D.: Space-time structure in high energy interactions. In: Gudehus, T., Kaiser, G., Perlmutter, A. (eds.) Fundamental Interactions at High Energy , pp 324–338. Gordon & Breach, New York (1969)Google Scholar
  6. 6.
    Finkelstein, D.: Quantum Relativity. Springer, Heidelberg (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Finkelstein, D.: Modular architecture of isospin and color. arXiv:1412.6498 (2014)
  8. 8.
    Fock, V.A.: Foundations of Quantum Mechanics. 1st Edn. Moscow. (1931). 2nd edition, Mir, Moscow (1978)Google Scholar
  9. 9.
    Hogan, C.J.: Directional Entanglement of Quantum Fields with Quantum Geometry. arXiv:1312.7798v6[gr-qc]21 Aug 2014
  10. 10.
    Kleinert, H.: Gravity as theory of defects in a crystal with only Second-Gradient elasticity. Ann. d. Physik 44, 117 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    Kozo-Polyansky, B.M. In: Margulis, L. (ed.) : V. Fet (Translator), Peter H. Raven (Introduction). Symbiogenesis: A New Principle of Evolution. Harvard University Press (2010)Google Scholar
  12. 12.
    Lieb, E.H.: Classical limit of quantum spin systems. Commun. Math. Phys. 31, 327–340 (1973)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Margulis, L., Sagan, D.: Acquiring Genomes: A theory of the origin of species. Basic books (2002)Google Scholar
  14. 14.
    Palev, T.D.: Lie algebraical aspects of the quantum statistics. Unitary quantization (A-quantization). Joint Institute for Nuclear Research Preprint JINR E17-10550. Dubna (1977). hep-th/9705032Google Scholar
  15. 15.
    Palev, T.D., Van der Jeugt, J.: Jacobson generators, Fock representations and statistics of s l(n+1). J. Math. Phys. 43, 3850–3873 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Penrose, R.: Angular momentum: an approach to combinatorial space-time. In: Bastin, T. (ed.) Quantum Theory and Beyond. Penrose kindly shared much of this seminal work with me ca 1960, long before publication, pp 151–180, Cambridge (1971)Google Scholar
  17. 17.
    Saller, H.: Gauge fields as bound states of subcanonical fermion fields. Il Nuovo Cimento A Series 11(24), 391 (1974)ADSCrossRefGoogle Scholar
  18. 18.
    Saller, H.: Operational Quantum Theory I. Nonrelativistic Structures. Springer, New York (2006a)zbMATHGoogle Scholar
  19. 19.
    Schwartz, J.T., Dewar, R.B.K.: Programming With Sets: An Introduction to Setl. Springer (1986). ISBN 978-0-387-96399-0Google Scholar
  20. 20.
    Segal, I.E.: A class of operator algebras which are determined by groups. Duke Mathematical Journal 18, 221–265 (1951). Especially Section 6AMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Simon, H.: The architecture of complexity. Proc. Am. Philos. Soc. 106, 6 (1962)Google Scholar
  22. 22.
    Snyder, H.P.: Quantized space-time. Phys. Rev. 71, 38 (1947)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Stückelberg, E.C.G.: Quantum theory in real Hilbert space. Helv. Phys. Acta 33, 727–752 (1960)MathSciNetGoogle Scholar
  24. 24.
    Takeuti, G.: Quantum set theory. In: Beltrametti, E. (ed.) Current Issues in Quantum Logic, p 303322. Plenum (1981)Google Scholar
  25. 25.
    von Neumann, J.: Eine Axiometisierung der Mengenlehre, vol. 154. Also in J. von Neumann, Collected Works, volume 1, page 35 (1925)Google Scholar
  26. 26.
    von Neumann, J.: Mathematische Grundlagen Der Quantenmechanik. Springer, Berlin (1932). Translated by R. T. Beyer as Mathematical Foundations of Quantum Mechanics, Princeton (1955)zbMATHGoogle Scholar
  27. 27.
    Von Neumann, J., Halperin, I.: Continuous Geometries with a Transition Probability Memoirs of the American Mathematical Society, vol. 252. American Mathematical Society, Providence, R.I. (1981)Google Scholar
  28. 28.
    Weinberg, S.: The quantum theory of fields volume 1: Foundations (2005)Google Scholar
  29. 29.
    Weinberg, S.: The quantum theory of fields volume 2: Modern applications (2005)Google Scholar
  30. 30.
    Yang, C.N.: On quantized space-time. Phys. Rev. 72, 874 (1947)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations