Skip to main content
Log in

Controlling Continuous-Variable Quantum Key Distribution with Entanglement in the Middle Using Tunable Linear Optics Cloning Machines

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Continuous-variable quantum key distribution (CVQKD) can provide detection efficiency, as compared to discrete-variable quantum key distribution (DVQKD). In this paper, we demonstrate a controllable CVQKD with the entangled source in the middle, contrast to the traditional point-to-point CVQKD where the entanglement source is usually created by one honest party and the Gaussian noise added on the reference partner of the reconciliation is uncontrollable. In order to harmonize the additive noise that originates in the middle to resist the effect of malicious eavesdropper, we propose a controllable CVQKD protocol by performing a tunable linear optics cloning machine (LOCM) at one participant’s side, say Alice. Simulation results show that we can achieve the optimal secret key rates by selecting the parameters of the tuned LOCM in the derived regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  2. Derkach, I., Usenko, V. C., Filip, R: Preventing side-channel effects in continuous-variable quantum key distribution. Phys. Rev. A 93(3), 032309 (2016)

    Article  ADS  Google Scholar 

  3. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N. J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421(6920), 238–241 (2003)

    Article  ADS  Google Scholar 

  4. Weedbrook, C., Lance, A. M., Bowen, W. P., Symul, T., Ralph, T. C., Lam, P. K: Coherent-state quantum key distribution without random basis switching. Phys. Rev. A 73(2), 022316 (2005)

    Article  ADS  Google Scholar 

  5. Li, Z., Zhang, Y., Wang, X., Xu, B., Peng, X., Guo, H: Non-gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution. Phys. Rev. A 93(1), 012310 (2016)

    Article  ADS  Google Scholar 

  6. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N. J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature. 421(6920), 238–241 (2003)

    Article  ADS  Google Scholar 

  7. Garca-Patrn, R., Cerf, N. J: Continuous-variable quantum key distribution protocols over noisy channels. Phys. Rev. Lett. 102(13), 130501 (2009)

    Article  ADS  Google Scholar 

  8. Waks, E., Zeevi, A., Yamamoto, Y: Security of quantum key distribution with entangled photons against individual attacks. Phys. Rev. A 65(5), 052310 (2002)

    Article  ADS  Google Scholar 

  9. Ma, X., Fung, C. H. F., Lo, H. K: Quantum key distribution with entangled photon sources. Phys. Rev. A 76(1), 012307 (2007)

    Article  ADS  Google Scholar 

  10. Weedbrook, C: Continuous-variable quantum key distribution with entanglement in the middle. Phys. Rev. A 87(2), 022308 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Guo, Y., Lv, G., Zeng, G.: Balancing continuous-variable quantum key distribution with source-tunable linear optics cloning machine. Quantum Inf. Process. 14(11), 4323–4338 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Usenko, V. C., Filip, R.: Trusted noise in Continuous-Variable quantum key distribution: a threat and a defense. Entropy. 18(1), 20 (2016)

    Article  ADS  Google Scholar 

  13. Zhang, Y. C., Li, Z., Yu, S., Gu, W., Peng, X., Guo, H: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)

    Article  ADS  Google Scholar 

  14. Huang, P., He, G., Fang, J., Zeng, G: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87 (1), 012317 (2013)

    Article  ADS  Google Scholar 

  15. Haderka, O., Michalek, V., Urbasek, V., Jezek, M.: Fast time-domain balanced homodyne detection of light. Appl. Opt. 48(15), 2884–2889 (2009)

    Article  ADS  Google Scholar 

  16. Wang, C., Huang, P., Huang, D., Lin, D., Zeng, G: Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects. Phys. Rev. A 93(2), 022315 (2016)

    Article  ADS  Google Scholar 

  17. Navascus, M., Acn, A.: Securitybounds for continuous variables quantum key distribution. Phys. Rev. Lett. 94(2), 020505 (2005)

    Article  ADS  Google Scholar 

  18. Garcia-Patron, R., Cerf, N.J.: Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97(19), 190503 (2006)

    Article  ADS  Google Scholar 

  19. Grosshans, F., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, P.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables (2003). preprint arXiv:quant-ph/0306141

  20. Weedbrook, C., Pirandola, S., Garca-Patrn, R., Cerf, N. J., Ralph, T. C., Shapiro, J. H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84 (2), 621 (2012)

    Article  ADS  Google Scholar 

  21. Serafini, A: Multimode uncertainty relations and separability of continuous variable states. Phys. Rev. Lett. 96(11), 110402 (2006)

    Article  ADS  Google Scholar 

  22. Fang, J., Huang, P., Zeng, G: Multichannel parallel continuous-variable quantum key distribution with gaussian modulation. Phys. Rev. A 89(2), 022315 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61379153, 61572529), and partly by China Postdoctoral Science Foundation (Grant Nos. 2013M542119, 2014T70772), Science and Technology Planning Project of Hunan Province, China (Grant No. 2015RS4032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X.D., Chen, F., Wu, X.H. et al. Controlling Continuous-Variable Quantum Key Distribution with Entanglement in the Middle Using Tunable Linear Optics Cloning Machines. Int J Theor Phys 56, 415–426 (2017). https://doi.org/10.1007/s10773-016-3183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3183-8

Keywords

Navigation