Skip to main content
Log in

Enforcing Thermal Entanglement of Three Coupled Qubits by Dissipation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The stationary state entanglement in a chain with three spins is reported. Each of spins couples to its own separate bosonic reservoir. The master equation for such spins’ system is derived under the Born-Markovian approximation. The result presents that the coupling between the middle spin and its bosonic bath in some special temperature region reinforce the entanglement between the spins. By analyzing the heat current between the middle spin and its bosonic bath, we find a tight relationship between the direction of heat current from the middle spin to its bosonic bath and the reinforcement of the entanglement. The entanglement increases with the heat current between the middle spin and its bosonic bath almost linearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Einstein, A., et al.: Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. Schröinger, E.: Proc. Cambridge Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  3. Bell, J.S.: Physics (Long Island City N.Y.) 1, 195 (1964)

    Google Scholar 

  4. Nielsen, M.A., et al.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Hagley, E., Maitre, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J.M., Haroche, S.: Phys. Rev. Lett. 79, 1 (1997)

    Article  ADS  Google Scholar 

  6. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  7. Schaffry, M., Lovett, B.W., Gauger, Erik M.: Phys. Rev. A 84, 032332 (2011)

    Article  ADS  Google Scholar 

  8. Bellomo, B., Lo Franco, R., Compagno, G.: Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  9. Lu, M., Xia, Y., Shen, L.-T., Song, J., An, N.B.: Phys. Rev. A 89, 012326 (2014)

    Article  ADS  Google Scholar 

  10. Chen, Y.-H., Xia, Y., Wu, Q.-C., Huang, B.-H., Song, J.: Phys. Rev. A 93, 052109 (2016)

    Article  ADS  Google Scholar 

  11. Chen, Y.-H., Xia, Y., Chen, Q.-Q., Song, J.: Phys. Rev. A 91, 012325 (2016)

    Article  ADS  Google Scholar 

  12. Kang, Y.-H., Chen, Y.-H., Wu, Q.-C., Huang, B.-H., Xia, Y., Song, J.: Sci. Rep. 6, 30151 (2016)

    Article  ADS  Google Scholar 

  13. Breuer, H.P., et al.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  14. Arnesen, M.C., Bose, S., Vedral, V.: Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  15. Sun, Y., Chen, Y., Chen, H.: Phys. Rev. A 68, 044301 (2003)

    Article  ADS  Google Scholar 

  16. Cao, M., Zhu, S.: Phys. Rev. A 71, 034311 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Cao, J.P., Sun, Z.Z., Yin, S., Wang, Y.P., Wang, X.R.: J. Phys. A 38, 2579 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Eisler, V., Zimboras, Z.: Phys. Rev. A 71, 042318 (2005)

    Article  ADS  Google Scholar 

  19. Burgarth, D., Giovannetti, V.: Phys. Rev. A 76, 062307 (2007)

    Article  ADS  Google Scholar 

  20. Zhang, X.X., Li, F.L.: Phys. Lett. A 375, 4130 (2011)

    Article  ADS  Google Scholar 

  21. Yi, X.X., Tong, D.M., Kwek, L.C., Oh, C.H: J. Phys. B 40, 281 (2007)

    Article  ADS  Google Scholar 

  22. Huang, X.L., Guo, J.L., Yi, X.X.: Phys. Rev. A 80, 054301 (2009)

    Article  ADS  Google Scholar 

  23. Huang, X.L., Yi, X.X., Wu, C., Feng, X.L., Yu, S.X., Oh, C.H.: Phys. Rev. A 78, 062114 (2008)

    Article  ADS  Google Scholar 

  24. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  25. Karasik, R.I., Marzlin, K.-P., Sanders, B.C., Whaley, K.B.: Phys. Rev. A 77, 052301 (2008)

    Article  ADS  Google Scholar 

  26. Quiroga, L., Rodriguez, F.J., Ramirez, M.E., Paris, R.: Phys. Rev. A 75, 032308 (2007)

    Article  ADS  Google Scholar 

  27. Wichterich, H., Henrich, M.J., Breuer, H.-P., Gemmer, J., Michel, M.: Phys. Rev. E 75, 031115 (2007)

    Article  ADS  Google Scholar 

  28. Yan, Y., Wu, C.-Q., Li, B.: Phys. Rev. B 79, 014207 (2009)

    Article  ADS  Google Scholar 

  29. Sinaysky, I., Petruccione, F., Burgarth, D.: Phys. Rev. A 78, 062301 (2008)

    Article  ADS  Google Scholar 

  30. Rigol, M., Dunjko, V., Olshanii, M.: Nature 452, 854 (2008)

    Article  ADS  Google Scholar 

  31. Liao, J.-Q., Huang, J.-F., Kuang, L.-M.: Phys. Rev. A 83, 052110 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China under Grant No. 11075027, 1154162, 11605024 and the Research Foundation of Sichuan University of Science and Engineering Grant No. 2015RC40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, AG., Yang, WS., Lv, SF. et al. Enforcing Thermal Entanglement of Three Coupled Qubits by Dissipation. Int J Theor Phys 56, 339–350 (2017). https://doi.org/10.1007/s10773-016-3173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3173-x

Keywords

Navigation