Skip to main content
Log in

Discrepancies between Observational Data and Theoretical Forecast in Single Field Slow Roll Inflation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The PLANCK collaboration has determined, or greatly constrained, values for the spectral parameters of the CMB radiation, namely the spectral index n s , its running α s , the running of the running β s , using a growing body of measurements of CMB anisotropies by the Planck satellite and other missions. These values do not follow the hierarchy of sizes predicted by single field, slow roll inflationary theory, and are thus difficult to fit for such inflation models. In this work we present first a study of 49 single field, slow roll inflationary potentials in which we assess the likelyhood of these models fitting the spectral parameters to their currently most accurate determination given by the PLANCK collaboration. We check numerically with a MATLAB program the spectral parameters that each model can yield for a very broad, comprehensive list of possible parameter and field values. The comparison of spectral parameter values supported by the models with their determinations by the PLANCK collaboration leads to the conclusion that the data provided by PLANCK2015 TT+lowP and PLANCK2015 TT,TE,EE+lowP taking into account the running of the running disfavours 40 of the 49 models with confidence level at least 92.8 %. Next, we discuss the reliability of the current computations of these spectral parameters. We identify a bias in the method of determination of the spectral parameters by least residue parameter fitting (using MCMC or any other scheme) currently used to reconstruct the power spectrum of scalar perturbations. This bias can explain the observed contradiction between theory and observations. Its removal is computationally costly, but necessary in order to compare the forecasts of single field, slow roll theories with observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ade, P.A.R., et al.: Astron. Astrophys. 571, A22 (2014)

    Article  Google Scholar 

  2. Ade, P.A.R., et al.: (arXiv:1502.02114) (2015)

  3. Albrecht, A., Brandenberger, R.H.: Phys. Rev. D 31, 1225 (1986)

    Article  ADS  Google Scholar 

  4. Barrow, J.D., Nunes, N.J.: Phys. Rev. D 76, 043501 (2007)

    Article  ADS  Google Scholar 

  5. Bassett, B.A., Tsujikawa, S., Wands, D.: Rev. Mod. Phys. 78, 537 (2006)

    Article  ADS  Google Scholar 

  6. Bastero-Gil, M., et al.: JCAP 1410, 053 (2014)

    Article  ADS  Google Scholar 

  7. Baumann, D.: The Physics of Inflation, ICTS course. (2011)

  8. Berera, A.: Phys. Rev. Lett. 75, 3218 (1995)

    Article  ADS  Google Scholar 

  9. Binetruy, P., Dvali, G.: Phys. Lett. B 388, 241 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cai, Y.F., et al.: Phys. Rev. D 80, 023511 (2009)

    Article  ADS  Google Scholar 

  11. Cai, Y.F., Brandenberger, R., Zhang, X.: JCAP 1103, 003 (2011)

    Article  ADS  Google Scholar 

  12. Cai, Y.F.: Science China. Phys. Mech. Astr. 57, 1414 (2014)

    Article  Google Scholar 

  13. Christensen, N., Meyer, R.: (arXiv:0006401) (2000)

  14. Conlon, J.P, Quevedo, F.: JHEP 0601, 146 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dodelson, S., Kinney, W.H., Kolb, E.W.: Phys. Rev. D 56, 3207 (1997)

    Article  ADS  Google Scholar 

  16. Dudas, E., et al.: (arXiv:1202.6630) (2012)

  17. Easther, R., Peiris, H.: JCAP 0609, 010 (2006)

    ADS  Google Scholar 

  18. Elizalde, E., Odintsov, S.D., Pozdeeva, E.O., Vernov, S.Y.: Phys. Rev. D 90, 084001 (2014)

    Article  ADS  Google Scholar 

  19. Giannantonio, T., Komatsu, E.: Phys. Rev. D 91, 023506 (2015)

    Article  ADS  Google Scholar 

  20. Halyo, E.: Phys. Lett. B 387, 43 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hodges, H, Blumenthal, G: Phys. Rev. D 42, 3329 (1999)

    Article  ADS  Google Scholar 

  22. Hu, B., O’Connor, D.: Phys. Rev. D 34, 2535 (1986)

    Article  ADS  Google Scholar 

  23. Huang, Q.G.: JCAP 0611, 004 (2006)

    Article  ADS  Google Scholar 

  24. Kinney, W.H., Riotto, A.: Phys. Lett. B 435, 272 (1998)

    Article  ADS  Google Scholar 

  25. Kinney, W.H., Riotto, A.: Astropart. Phys. 10, 387 (1999)

    Article  ADS  Google Scholar 

  26. Kurki-Suonio, H.: Cosmology I & II. Lecture notes. Univ. Helsinki (2005)

  27. Lee, S., Nam, S.: Int. J. Mod. Phys. A 26, 1073 (2011)

    Article  ADS  Google Scholar 

  28. Martin, J., Ringeval, C.: Phys. Rev. D D69, 083515 (2004)

    Article  ADS  Google Scholar 

  29. Martin, J., Ringeval, C., Vennin, V.: (arXiv:1303.3787) (2013)

  30. Martin, J., Ringeval, C., Trotta, R., Vennin, V.: JCAP 1403, 039 (2014)

    ADS  MathSciNet  Google Scholar 

  31. Pajer, E.: JCAP 0804, 031 (2008)

    Article  ADS  Google Scholar 

  32. Parsons, P., Barrow, J.D.: Phys.Rev. B 51, 6757 (1995)

    ADS  Google Scholar 

  33. Press, W.H., et al.: Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge U.P. (1992)

  34. Seljak, U., Zaldarriaga, M.: Astrophys. J. 469, 437 (1996)

    Article  ADS  Google Scholar 

  35. De Felice, A., Tsujikawa, S.: Living Rev. Rel. 13, 3 (2010)

    Google Scholar 

  36. Nojiri, S., Odintsov, S.D.: Phys. Rept. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  37. Verde, L., et al.: Astrophys. J. Supp. Series 148, 195 (2003)

    Article  ADS  Google Scholar 

  38. Wan, Y., et al.: Phys. Rev. D 90, 023537 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This investigation has been supported in part by MINECO (Spain), projects MTM2011-27739-C04-01, and MTM2012-38122-C03-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume de Haro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorós, J., de Haro, J. Discrepancies between Observational Data and Theoretical Forecast in Single Field Slow Roll Inflation. Int J Theor Phys 55, 5393–5408 (2016). https://doi.org/10.1007/s10773-016-3159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3159-8

Keywords

Navigation