Skip to main content
Log in

Optimal Photon Blockade on the Maximal Atomic Coherence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

There is generally no obvious evidence in any direct relation between photon blockade and atomic coherence. Here instead of only illustrating the photon statistics, we show an interesting relation between the steady-state photon blockade and the atomic coherence by designing a weakly driven cavity QED system with a two-level atom trapped. It is shown for the first time that the maximal atomic coherence has a perfect correspondence with the optimal photon blockade. The negative effects of the strong dissipations on photon statistics, atomic coherence and their correspondence are also addressed. The numerical simulation is also given to support all of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Werner, M.J., Imamoḡlu, A.: Photon-photon interactions in cavity electromagnetically induced transparency. Phys. Rev. A 61(R), 011801 (1999)

    Article  ADS  Google Scholar 

  2. Wang, H., et al.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92, 033806 (2015)

    Article  ADS  Google Scholar 

  3. Ferretti, S., Savona, V., Gerace, D.: Optimal antibunching in passive photonic devices based on coupled nonlinear resonators. New J. Phys. 15, 025012 (2013)

    Article  ADS  Google Scholar 

  4. Rabl, P.: Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011)

    Article  ADS  Google Scholar 

  5. Nunnenkamp, A., Børkje, K., Girvin, S.M.: Single-Photon Optomechanics. Phys. Rev. Lett. 107, 063602 (2011)

    Article  ADS  Google Scholar 

  6. Kómár, P., et al.: Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A 87, 013839 (2013)

    Article  ADS  Google Scholar 

  7. Liao, J.Q., Nori, F.: Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013)

    Article  ADS  Google Scholar 

  8. Liu, Y.L., Liu, Z.P., Zhang, J.: Coherent-feedback-induced controllable optical bistability and photon blockade. J. Phys. B: At. Mol. Opt. Phys. 48, 105501 (2015)

    Article  Google Scholar 

  9. Hoffman, A.J., et al.: Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 053602 (2011)

    Article  ADS  Google Scholar 

  10. Liu, Y.X., Xu, X.W., Miranowicz, A., Nori, F.: From blockade to transparency: Controllable photon transmission through a circuit-QED system. Phys. Rev. A 89, 043818 (2014)

    Article  ADS  Google Scholar 

  11. Reinhard, A., et al.: Strongly correlated photons on a chip. Nat. Photonics 6, 93 (2012)

    Article  ADS  Google Scholar 

  12. Birnbaum, K.M., et al.: Photon blockade in an optical cavity with one trapped atom. Nature (London) 436, 87 (2005)

    Article  ADS  Google Scholar 

  13. Dayan, B., et al.: A Photon Turnstile Dynamically Regulated by One Atom. Science 319, 1062 (2008)

    Article  ADS  Google Scholar 

  14. Verger, A., Ciuti, C., Carusotto, I.: Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006)

    Article  ADS  Google Scholar 

  15. Faraon, A., et al.: Climbing the Jaynes–Cummings ladder and observing its \(\sqrt {n}\) nonlinearity in a cavity QED system. Nature 454, 315 (2008)

    Article  ADS  Google Scholar 

  16. Müller, K., et al.: Coherent Generation of Nonclassical Light on Chip via Detuned Photon Blockade. Phys. Rev. Lett. 114, 233601 (2015)

    Article  ADS  Google Scholar 

  17. Kubanek, A., et al.: Two-Photon Gateway in One-Atom Cavity Quantum Electrodynamics. Phys. Rev. Lett. 101, 203602 (2008)

    Article  ADS  Google Scholar 

  18. Faraon, A., Majumdar, A., Vučković, J.: Generation of nonclassical states of light via photon blockade in optical nanocavities. Phys. Rev. A 81, 033838 (2010)

    Article  ADS  Google Scholar 

  19. Majumdar, A., Kim, E.D., Gong, Y.Y., Bajcsy, M., Vuč, J.: Phonon mediated off-resonant quantum dot–cavity coupling under resonant excitation of the quantum dot. Phys. Rev. B 84, 085309 (2011)

    Article  ADS  Google Scholar 

  20. Tian, L., Carmichael, H.J.: Quantum trajectory simulations of the two-state behavior of an optical cavity containing one atom. Phys. Rev. A 46, R6801 (1992)

    Article  ADS  Google Scholar 

  21. Chang, D.E., Vuletić, V., Lukin, M. -D.: Quantum nonlinear optics-photon by photon. Nat. photonics 8, 685 (2014)

    Article  ADS  Google Scholar 

  22. Majumdar, A., Bajcsy, M., Vučković, J.: Probing the ladder of dressed states and nonclassical light generation in quantum-dot-cavity QED. Phys. Rev. A 85 (R), 041801 (2012)

    Article  ADS  Google Scholar 

  23. Zhang, Y., Zhang, J., Wu, S.X., Yu, C.S.: The effect of center-of-mass motion on photon statistics. Ann. Phy. 361, 563 (2015)

    Article  MathSciNet  Google Scholar 

  24. Streltsovet, A., et al.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. Piani, M., et al.: Robustness of asymmetry and coherence of quantum states. arXiv:1601.03782

  26. Napoli, C., et al.: Robustness of coherence: An operational and observable measure of quantum coherence. arXiv:1601.03781

  27. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  28. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  29. Streltsov, A.: Genuine Quantum Coherence. arXiv:1511.08346

  30. Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence and asymmetry. arXiv:1510.06474

  31. Albrecht, A.: Some remarks on quantum coherence. J. Mod. Opt. 41, 2467 (1994)

    Article  ADS  Google Scholar 

  32. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  33. Scully, M.O.: Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett. 67, 1855 (1991)

    Article  ADS  Google Scholar 

  34. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying Coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  35. Åberg, J.: Quantifying Superposition. arXiv:quant-ph/0612146 (2006)

  36. Yu, C.S., Zhang, Y., Zhao, H.Q.: Quantum correlation via quantum coherence. Quant. Inf. Proc. 13(6), 1437 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yao, Y., Xiao, X., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  38. Xi, Z.J., Li, Y.M., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep 5, 10922 (2015)

    Article  ADS  Google Scholar 

  39. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  40. Monras, A., Checińska, A., Ekert, A.: Witnessing quantum coherence in the presence of noise. New J. Phys. 16, 063041 (2014)

    Article  ADS  Google Scholar 

  41. Rybak, L., et al.: Generating molecular rovibrational coherence by Two-Photon femtosecond photoassociation of thermally hot atoms. Phys. Rev. Lett. 107, 273001 (2011)

    Article  ADS  Google Scholar 

  42. Barontini, G., Labouvie, R., Stubenrauch, F., Vogler, A., Guarrera, V., Ott, H.: Controlling the dynamics of an open Many-Body quantum system with localized dissipation. Phys. Rev. Lett. 110, 035302 (2013)

    Article  ADS  Google Scholar 

  43. Barreiro, J.T., et al.: An open-system quantum simulator with trapped ions. Nature 470, 486 (2011)

    Article  ADS  Google Scholar 

  44. Cai, J., Plenio, M.B.: Chemical compass model for avian magnetoreception as a quantum coherent device. Phys. Rev. Lett. 111, 230503 (2013)

    Article  ADS  Google Scholar 

  45. Ishizaki, A., Fleming, G.R.: Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl. Acad. Sci. 106, 17255 (2009)

    Article  ADS  Google Scholar 

  46. O’Reilly, E.J., Olaya-Castro, A.: Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat. Commun. 5, 3012 (2014)

    Google Scholar 

  47. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  Google Scholar 

  48. Correa, L.A., Palao, J.P., Alonso, D., Adesso, G.: Quantum-enhanced absorption refrigerators. Sci. Rep. 4, 3949 (2014)

    Article  ADS  Google Scholar 

  49. Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing Quantum Coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    ADS  Google Scholar 

  50. Grünwald, P., Vogel, W.: Optimal squeezing in resonance fluorescence via Atomic-State purification. Phys. Rev. Lett. 109, 013601 (2012)

    Article  ADS  Google Scholar 

  51. Wang, H., Goorskey, D., Xiao, M.: Enhanced kerr nonlinearity via atomic coherence in a Three-Level atomic system. Phys. Rev. Lett. 87, 073601 (2001)

    Article  ADS  Google Scholar 

  52. Bajcsy, M., Majumdar, A., Rundquist, A., Vučković, J.: Photon blockade with a four-level quantum emitter coupled to a photonic-crystal nanocavity. New. J. Phys. 15, 025014 (2013)

    Article  ADS  Google Scholar 

  53. Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50(7), 36 (1997)

    Article  Google Scholar 

  54. Ebert, M., Kwon, M., Walker, T.G., Saffman, M.: Coherence and Rydberg blockade of atomic ensemble qubits. arXiv:1501.04083v4

  55. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  56. Scully, M.O., Suhail Zubairy, M.: Quantum optics Cambridge university press (1997)

  57. Lang, C., et al.: Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. lett 106, 243601 (2011)

    Article  ADS  Google Scholar 

  58. Zou, X.T., Mandel, L.: Photon-antibunching and sub-Poissonian photon statistics. Phys. Rev. A 41, 475 (1990)

    Article  ADS  Google Scholar 

  59. Tan, S.M.: A computational toolbox for quantum and atomic optics. J. Opt. B: Quantum Semiclassical Opt. 1, 424 (1999)

    Article  ADS  Google Scholar 

  60. Xu, X.W., Li, Y.: Strong photon antibunching of symmetric and antisymmetric modes in weakly nonlinear photonic molecules. Phys. Rev. A 90, 033809 (2014)

    Article  ADS  Google Scholar 

  61. Xu, X.W., Li, Y.: Tunable photon statistics in weakly nonlinear photonic molecules. Phys. Rev. A 90, 043822 (2014)

    Article  ADS  Google Scholar 

  62. Carmichael, H.J.: An Open Systems Approach to Quantum Optics, Lecture Notes in Physics. Springer, Berlin (1993)

    MATH  Google Scholar 

  63. Carusotto, I., Ciuti, C.: Quantum fluids of light. Rev. Mod. Phys 85, 299 (2013)

    Article  ADS  Google Scholar 

  64. Carmichael, H.J., Brecha, R.J., Rice, P.R.: Quantum interference and collapse of the wavefunction in cavity QED. Opt. Commun. 82, 73 (1991)

    Article  ADS  Google Scholar 

  65. Carmichael, H.J.: Photon antibunching and squeezing for a single atom in a resonant cavity. Phys. Rev. Lett. 55, 2790 (1985)

    Article  ADS  Google Scholar 

  66. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer-Verlag, Berlin, Heidelberg (1994)

    Book  MATH  Google Scholar 

  67. Yu, C.S., Song, H.S.: Bipartite concurrence and localized coherence. Phys. Rev. A 80, 022324 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Cunha, O.T.: The geometry of entanglement sudden death. New J. Phys. 9, 237 (2007)

    Article  MathSciNet  Google Scholar 

  69. Ann, K., Jaeger, G.: Finite-time destruction of entanglement and non-locality by environmental influences. Found. Phys. 39, 790 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Y Zhang thanks J. S. Jin for valuable discussion. This work was supported by the National Natural Science Foundation of China, under Grant No.11375036 and 11175033, the Xinghai Scholar Cultivation Plan and the Fundamental Research Funds for the Central Universities under Grants No. DUT15LK35 and No. DUT15TD47.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, J. & Yu, Cs. Optimal Photon Blockade on the Maximal Atomic Coherence. Int J Theor Phys 55, 5239–5249 (2016). https://doi.org/10.1007/s10773-016-3145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3145-1

Keywords

Navigation