Skip to main content
Log in

Witness for Non-Quasi Maximally Entangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Maximally entangled states, defined as those states that have the maximal entanglement of formation under some entanglement measure, are the ideal resource for many quantum missions. In this paper, we call a convex roof of maximally entangled pure states a quasi maximally entangled state. First, we present the concept of a witness for non-quasi maximally entangled states, which is an observable that can distinguish some non-quasi maximally entangled states from quasi maximally entangled ones. Then we prove that every non-quasi maximally entangled state can be witnessed by a witness and obtain some necessary and sufficient conditions for an observable to be a witness for non-quasi maximally entangled states. Lastly, we give some classes of Hermitian operators, which can become witnesses. Especially, we compute non-quasi maximally entangled states that can be detected by a specific product operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrodinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Phil. Soc. 31, 555 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Ekert, A.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C., Brassard, G., Crepean, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ekert, A., Jozs, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 733 (1996)

    Article  ADS  Google Scholar 

  7. Sheng, Y.B., Deng, F.G., Long, G. L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A. 82, 032318 (2010)

    Article  ADS  Google Scholar 

  8. Wang, X.L., Cai, X.D., Su, Z.E., et al.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)

    Article  ADS  Google Scholar 

  9. Li, T., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61, 163–171 (2016)

    Article  Google Scholar 

  10. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  11. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zhou, K., Wang, Y., Wang, T., et al.: Implementation of high capacity quantum secret sharing using orbital angular momentum of photons. Int. J. Theor. Phys. 53, 3927–3934 (2014)

    Article  MATH  Google Scholar 

  13. Fei, S.M.: From quantum discord and quantum entanglement to local hidden variable models. Int. J. Theor. Phys. 54, 4046–4053 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Qi, X., Hou, J.: Optimality of entanglement witnesses constructed from arbitrary permutations. Quantum Inf. Proc. 14, 2499–2525 (2015)

    Article  ADS  MATH  Google Scholar 

  15. Sheng, Y.B., Guo, R., Pan, J., et al.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Proc. 14, 963–978 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Yan, Y., Gu, W.J., Li, G.X.: Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling. Sci. China-Phys. Mech. Astron. 58, 50306 (2015)

    Google Scholar 

  17. Kim, K.I., Li, H.M., Zhao, B.K.: Genuine tripartite entanglement dynamics and transfer in a triple jaynes-cummings Mode. Int. J. Theor. Phys. 55, 241–254 (2016)

    Article  MATH  Google Scholar 

  18. Wang, C., Shen, W.W., Mi, S.C., et al.: Concentration and distribution of entanglement based on valley qubits system in graphene. Sci. Bull. 60, 2016–2021 (2015)

    Article  Google Scholar 

  19. Maimaiti, W., Li, Z., Chesi, S., et al.: Entanglement concentration with strong projective measurement in an optomechanical system. Sci. China-Phys. Mech. Astron. 58, 50309 (2015)

    Article  Google Scholar 

  20. Cao, D.Y., Liu, B.H., Wang, Z., et al.: Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bull. 60, 1128–1132 (2015)

    Article  Google Scholar 

  21. Wang, Z., Zhang, C., Huang, Y.F., et al.: Experimental verification of genuine multipartite entanglement without shared reference frames. Sci. Bull. 61, 714–719 (2016)

    Article  Google Scholar 

  22. Yan, H., Chen, J.F.: Narrowband polarization entangled paired photons with controllable temporal length. Sci. China-Phys. Mech. Astron. 58, 74201 (2015)

    Google Scholar 

  23. Gao, M., Lei, F.C., Du, C.G., et al.: Dynamics and entanglement of a membrane-in-the-middle optomechanical system in the extremely-large-amplitude regime. Sci. China-Phys. Mech. Astron. 59, 610301 (2016)

    Article  Google Scholar 

  24. Heilmann, R., Grafe, M., Nolte, S., et al.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60, 96–100 (2015)

    Article  Google Scholar 

  25. Xu, J.S., Li, C.F.: Quantum integrated circuit: Classical characterization. Sci. Bull. 60, 141 (2015)

    Article  Google Scholar 

  26. Yuan, H.Y., Liu, M., Pan, G.Z., Zhang, G., Zhou, J., Zhang, Z.J.: Quantum identity authentication based on ping-pong technique without entanglements. Quantum Inf. Proc. 13, 2535 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ji, Q.B., Liu, Y.M., Xie, C.M., Yin, X.F., Zhang, Z.J.: Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf. Proc. 13, 1659 (2014)

    Article  ADS  MATH  Google Scholar 

  28. Zhang, Z.Y., Liu, Y.M., Zhang, W., Zhang, Z.J.: Error self-correction in the tri-node indirect teleportation of a qutrit state with two partially entangled qutrit states. Eur. Phys. J. D 64, 539 (2011)

    Article  ADS  Google Scholar 

  29. Xu, C.J., Liu, Y.M., Yin, X.F., Zhang, Z.J.: A note on “Chain teleportation with partially entangled state”. Int. J. Quant. Inf. 8, 1421 (2010)

    Article  MATH  Google Scholar 

  30. Horodecki, R., Horodecki, P., Horodecki, M., et al.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Cavalcanti, D.F., Brandão, G.S.L., Terra Cunha, M.O.: Are all maximally entangled states pure? Phys. Rev. A 72, 040303(R) (2005)

    Article  ADS  MathSciNet  Google Scholar 

  32. Li, Z.G., Zhao, M.J., Fei, S.M.: Mixed maximally entangled states. Quantum Inf. Comp. 12, 0063 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Zhao, M.J.: Maximally entangled states and fully entangled fraction. Phys. Rev. A 91, 012310 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. Bruns, D., Sperling, J., Scheel, S.: Witnessing random unitary and projective quantum channels: Complementarity between separable and maximally entangled states. Phys. Rev. A 93, 032132 (2016)

    Article  ADS  Google Scholar 

  35. Conway, J.B.: A Course in Functional Analysis. Springer-Verlag, New York (1990)

    MATH  Google Scholar 

Download references

Acknowledgments

This subject was supported by the National Natural Science Foundation of China (Nos. 11371012, 11401359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Guo, Z. & Cao, H. Witness for Non-Quasi Maximally Entangled States. Int J Theor Phys 55, 5202–5215 (2016). https://doi.org/10.1007/s10773-016-3141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3141-5

Keywords

Navigation