Skip to main content
Log in

Feynman’s Proof and Non-Elastic Displacement Fields: Relationship Between Magnetic Field and Defects Field

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the relationship between the magnetic field and the non-elastic displacement field including defects, from the viewpoints of non-commutativity of the positions and non-commutativity of the derivatives. The former non-commutativity is related to the magnetic field by Feynman’s proof (1948), and the latter is related to the defect fields by the continuum theory of defects. We introduce the concept of differential geometry to the non-elastic displacement field and derive an extended relation that includes basic equations, such as Gauss’s law for magnetism and the conservation law for dislocation density. The relation derived in this paper also extends the first Bianchi identity in linear approximation to include the effect of magnetism. These findings suggest that Feynman’s approach with a non-elastic displacement field is useful for understanding the relationship between magnetism and non-elastic mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amari, S.: Non-Riemannian stress space and dual dislocation. RAAG Memoirs 4, 153–161 (1968)

    Google Scholar 

  2. Amari, S.: Dualistic theory of non-Riemannian material manifolds. Int. J. Eng. Sci. 19, 1581–1594 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borradaile, G. J., Jackson, M.: Anisotropy of magnetic susceptibility (AMS): Magnetic petrofabrics of deformed rocks. Geological Society, London. Special Publ. 238, 299–360 (2004)

    Article  Google Scholar 

  4. Boulahoual, A., Sedra, M.B.: Noncommutative geometry framework and the Feynman’s proof of Maxwell equations. J. Math. Phys. 44, 5888–5901 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bozorth, R. M.: Ferromagnetism. Van Nostrand, New York (1951)

    Google Scholar 

  6. Bracken, P.: Relativistic equations of motion from Poisson brackets. Int. J. Theor. Phys. 37, 1625–1640 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dyson, F. J.: Feynman’s proof of the Maxwell equations. Am. J. Phys. 58, 209–211 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Edelen, D. G.: A four-dimensional formulation of defect dynamics and some of its consequences. Int. J. Eng. Sci. 18, 1095–1116 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelen, D. G., Lagoudas, D. C.: Gauge Theory and Defects in Solids. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  10. Engdahl, G.: Handbook of Giant Magnetostrictive Materials. Academic Press, San Diego (1999)

    Google Scholar 

  11. Golebiewska-Lasota, A. A., Edelen, D. G.: On the gauge transformations admitted by the equations of defect dynamics. Int. J. Eng. Sci. 17, 335–9 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kadic, A., Edelen, D. G.: A Gauge Theory of Dislocations and Disclinations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  13. Kleinert, H.: Double gauge theory of stresses and defects. Phys. Lett. A 97, 51–54 (1983)

    Article  ADS  Google Scholar 

  14. Kleinert, H.: Gauge Fields in Condensed Matter, vol. 2. World Scientific, Singapore (1989)

  15. Kondo, K.: On the geometrical and physical foundations of the theory of yielding. Proc. 2nd Japan Nat. Congr. Appl. Mech. 2, 41–47 (1952)

    Google Scholar 

  16. Kondo, K., Minagawa, S.: On the duality between yielding and fatigue fracture. RAAG Res. Not. 3rd Ser. 82, 1–20 (1963)

    MATH  Google Scholar 

  17. Kröner, E.: Continuum theory of defects. In: Balian, R. (ed.) Physics of Defects, pp 214–315. North-Holland, Amsterdam (1981)

  18. Kröner, E.: Incompatibility, defects, and stress functions in the mechanics of generalized continua. Int. J. Solids Struct. 21, 747–756 (1985)

    Article  ADS  MATH  Google Scholar 

  19. Malekolkalami, B., Farhoudi, M.: Gravitomagnetism and non-commutative geometry. Int. J. Theor. Phys. 53, 815–829 (2014)

    Article  MATH  Google Scholar 

  20. Montesinos, M., Perez-Lorenzana, A.: Minimal coupling and Feynman’s proof. Int. J. Theor. Phys. 38, 901–910 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Muto, J., Nagahama, H.: Dielectric anisotropy and deformation of crustal rocks: physical interaction theory and dielectric mylonites. Phys. Earth Planet In 141, 27–35 (2004)

    Article  ADS  Google Scholar 

  22. Nakamura, N., Nagahama, H.: Magnetic susceptibility and plastic strain of rocks by the differential geometric theory of the physical interaction field. Phys. Chem. Earth 22, 167–173 (1997)

    Article  Google Scholar 

  23. Nakamura, N., Nagahama, H.: Changes in magnetic and fractal properties of fractured granites near the Nojima Fault, Japan. Isl. Arc 10, 486–494 (2001)

    Article  Google Scholar 

  24. Nakamura, N., Hirose, T., Borradaile, G. J.: Laboratory verification of submicron magnetite production in pseudotachylytes: Relevance for paleointensity studies. Earth Planet Sc. Lett. 201, 13–18 (2002)

    Article  ADS  Google Scholar 

  25. Prykarpatsky, A. K., Bogolubov, N. N.: The Maxwell electromagnetic equations and the Lorentz type force derivation - the Feynman approach legacy. Int. J. Theor. Phys. 51, 237–245 (2012)

    Article  MATH  Google Scholar 

  26. Swamy, P. N.: Feynman’s proof of Maxwell equations: In the context of quantum gravity. Int. J. Theor. Phys. 48, 2432–2440 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tanimura, S.: Relativistic generalization and extension to the non-Abelian gauge theory of Feynman’s proof of the Maxwell equations. Am. J. Phys. 220, 229–247 (1992)

    MathSciNet  MATH  Google Scholar 

  28. Yajima, T., Yamasaki, K., Nagahama, N.: Geometry of stress function surfaces for asymmetric continuum. Acta Geophys. 61, 1703–1721 (2013)

    Article  ADS  Google Scholar 

  29. Yamasaki, K., Nagahama, H.: Energy integral in fracture mechanics (J-integral) and Gauss-Bonnet theorem. Z.MM Z. Angew. Math. Mech. 88, 515–520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yamasaki, K., Nagahama, H.: Hodge duality and continuum theory of defects. J. Phys. A Math. Gen. 32, L475–L481 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Yamasaki, K., Nagahama, H.: A deformed medium including a defect field and differential forms. J. Phys. A Math. Gen. 35, 3767–3778 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Yamasaki, K.: Continuum mechanics and differential forms. In: Koppel, A., Oja, J (eds.) Continuum Mechanics, pp 193–221, Nova Science Pub Inc (2010)

  33. Yamasaki, K., Yajima, T.: Differential geometric approach to the stress aspect of a fault: Airy stress function surface and curvatures. Acta Geophys. 60, 4–23 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhito Yamasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, N., Yamasaki, K. Feynman’s Proof and Non-Elastic Displacement Fields: Relationship Between Magnetic Field and Defects Field. Int J Theor Phys 55, 5186–5192 (2016). https://doi.org/10.1007/s10773-016-3139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3139-z

Keywords

Navigation