Skip to main content
Log in

Time Evolution and Characteristic Quantities of Squeezed Chaotic Field in Diffusion Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In exploring the time evolution law of squeezed chaotic state, described by the density operator,\(\rho _{0}=\left (1-e^{k}\right ) S^{\dagger }\left (r\right ) e^{ka^{\dagger }a}S\left (r\right ) \), in a diffusion channel, we find two physical quantities characteristic of this physical process, they are

$$\tau=\frac{1}{\left( 2\bar{n}+1\right) e^{-2r}+1}, \theta=\frac {1}{\left( 2\bar{n}+1\right) e^{2r}+1}, $$

where \(\bar {n}\) is average photon number of the chaotic field, r is the squeezing parameter and ρ 0 in normal ordering is

$$\rho_{0}=2\sqrt{\tau \theta}\colon \exp \left[ \frac{1}{2}\left( \tau -\theta \right) \left( a^{\dagger2}+a^{2}\right) -\left( \tau +\theta \right) a^{\dag}a\right] \colon. $$

We find in the diffusion process, τ and 𝜃 evolves into

$$\tau \rightarrow \tau^{\prime}=\frac{\tau}{1+2\kappa t\tau}, \theta \rightarrow \theta^{\prime}=\frac{\theta}{1+2\kappa t\theta}, $$

where κ represent diffusion coefficient, thus

$$\rho \left( t\right) =2\sqrt{\tau^{\prime}\theta^{\prime}}\colon \exp \left[ \frac{1}{2}\left( \tau^{\prime}-\theta^{\prime}\right) \left( a^{\dagger 2}+a^{2}\right) -\left( \tau^{\prime}+\theta^{\prime}\right) a^{\dagger }a\right] \colon, $$

this is the evolution law of squeezed chaotic state in diffusion channel. The photon number of the final state slightly increases by an amount κ t. This diffusion process can be considered a quantum controlling scheme in the way of photon addition by adjusting κ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, New York (1998)

    MATH  Google Scholar 

  2. Loudon, R.: The quantum theory of light. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

  3. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  4. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1995)

    MATH  Google Scholar 

  5. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  6. Loudon, R., Knight, P.L.: J. Mod. Optics 34, 709 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. Breuer, H.P., Petruccione, F.: The theory of open quantum systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  8. Carmichael, H.J.: Statistical Methods in Quantum Optics I, Master Equation and Fokker-Planck Equations. Springer-Verlag, Berlin (1999)

    Book  MATH  Google Scholar 

  9. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  10. Preskill, J.: Lecture notes for physics 229: Quantum information and computation (California Institution of Technology) (1998)

  11. Fan, H.Y., Ren, G.: Chin. Phys. Lett. 27, 050302 (2010)

    Article  ADS  Google Scholar 

  12. Orszag, M.: Quantum Optics. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  13. Fan, H.Y., Hu, L.Y.: Opt. Commun. 281, 5571 (2008)

    Article  ADS  Google Scholar 

  14. Fan, H.Y., Hu, L.Y.: Mod. Phys. Lett. B 21, 183 (2007)

    Article  ADS  Google Scholar 

  15. Da, C.: Dissertation for Doctoral Degree:Study of Decoherence of Some Optical Fields in Quantum Control and Its Applications(In Chinese) University of Science and Technology of China, Hefei (2014)

  16. Fan, H.Y., Lu, H.L., Fan, Y.: Ann. Phys. 321, 480 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wünsche, A.: J. Opt. B: Quantum Semiclass. Opt. 1, R11 (1999)

    Article  Google Scholar 

  18. Da, C.: J. Chaohu College 17, 36 (2015)

    Google Scholar 

  19. Fan, H.Y., Lu, H.L., Fan, Y.: Ann. Phys. 323, 500 (2008)

    Article  ADS  Google Scholar 

  20. Fan, H.Y., Zaidi, H.R., Klauder, J.R.: Phys. Rev. D 35, 1831 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  21. Fan, H.Y., Da, C., Chen, J.H.: Chin. Phy. B 23, 120302 (2014)

    Article  ADS  Google Scholar 

  22. Gradsbteyn, I.S., Ryzbik, L.M.: Table of Integrals, Series, and Products(Academic Press New York) (1980)

  23. Fan, H.Y., Yuan, H.C., Jiang, N.Q.: Sci. China-phys. Mech. Astron. 54, 2145 (2011)

    Article  ADS  Google Scholar 

  24. Fan, H.Y.: Representation and transformation theory in quantum mechanics: Progress of Dirac’s symbolic method. 2nd ed(in chinese) (USTC Press Hefei) (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Da.

Additional information

Work supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No. KJ2016A504), and the Doctoral Scientific Research Foundation of Chaohu University (Grant No. KYQD-201407).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, C., Fan, HY. Time Evolution and Characteristic Quantities of Squeezed Chaotic Field in Diffusion Channel. Int J Theor Phys 55, 4521–4531 (2016). https://doi.org/10.1007/s10773-016-3075-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3075-y

Keywords

Navigation