Skip to main content
Log in

Population Dynamics of Excited Atoms in Dissipative Cavities

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Population dynamics of excited atoms in dissipative cavities is investigated in this work. We present a method of controlling populations of excited atoms in dissipative cavities. For the initial state |e e A B |00〉 a b , the repopulation of excited atoms can be obtained by using atom-cavity couplings and non-Markovian effects after the atomic excited energy decays to zero. For the initial state |g g A B |11〉 a b , the two atoms can also be populated to the excited states from the initial ground states by using atom-cavity couplings and non-Markovian effects. And the stronger the atom-cavity coupling or the non-Markovian effect is, the larger the number of repopulation of excited atoms is. Particularly, when the atom-cavity coupling or the non-Markovian effect is very strong, the number of repopulation of excited atoms can be close to one in a short time and will tend to a steady value in a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alzetta, G., Gozzini, A., Moi, L., Orriols, G.: An experimental method for the observation of R.F. transitions and laser beat resonances in oriented Na vapour. II Nuovo Cimento B 36, 5 (1976)

    Article  ADS  Google Scholar 

  2. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  3. Král, P., Thanopulos, I., Shapiro, M.: Coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53 (2007)

    Article  ADS  Google Scholar 

  4. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  5. Lukin, M.D.: Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457 (2003)

    Article  ADS  Google Scholar 

  6. Mompart, J., Corbalan, R.: Lasing without inversion. J. Opt. B: Quantum Semiclass. Opt. 2, R7 (2000)

    Article  ADS  Google Scholar 

  7. Yoo, H.I., Eberly, J.H.: Dynamical theory of an atom with two or three levels interacting with quantized cavity fields. Phys. Rep. 118, 239 (1985)

    Article  ADS  Google Scholar 

  8. Radmore, P.M.: Population trapping in a multilevel system. Phys. Rev. A 26, 2252 (1982)

    Article  ADS  Google Scholar 

  9. Deng, Z., Eberly, J.H.: Coherent trapping in continuum-continuum transitions. Phys. Rev. A 34, 2492 (1986)

    Article  ADS  Google Scholar 

  10. Cirac, J.I., Sánchez-Soto, L.L.: Population trapping in two-level models: Spectral and statistical properties. Phys. Rev. A 44, 3317 (1997)

    Article  ADS  Google Scholar 

  11. Agarwal, G.S.: Coherent population trapping states of a system interacting with quantized fields and the production of the photon statistics matched fields. Phys. Rev. Lett. 71, 1351 (1993)

    Article  ADS  Google Scholar 

  12. Benjamin, L., Kartik, S., Paul, B., Oskar, P., Hideo, M.: Feasibility of detecting single atoms using photonic bandgap cavities. Nanotechnology 15, S556 (2004)

    Article  Google Scholar 

  13. Florescu, L., John, S., Quang, T., Wang, R.: Theory of a one-atom laser in a photonic bandgap microchip. Phys. Rev. A 69, 013816 (2004)

    Article  ADS  Google Scholar 

  14. Reithmaier, J.P., Sȩk, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197 (2004)

    Article  ADS  Google Scholar 

  15. Honer, J., Weimer, H., Pfau, T., Büchler, H.P.: Collective many-body interaction in Rydberg dressed atoms. Phys. Rev. Lett. 105, 160404 (2010)

    Article  ADS  Google Scholar 

  16. Liao, X.P., Fang, J.S., Fang, M.F.: Coherence-controlled stationary entanglement between two atoms embedded in a bad cavity injected with squeezed vacuum. Cent. Eur. J. Phys. 12, 9 (2014)

    Article  ADS  Google Scholar 

  17. Liao, X.P., Fang, J.S., Fang, M.F.: Steady-state discord between two qubits coupled collectively to a thermal reservoir. Int. J. Theor. Phys. 50, 2631 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Saffman, M., Waller, T., Mølmer, K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  19. Peyronel, T., Firstenberg, O., Liang, Q.Y., Hofferberth, S., Gorshkov, A.V., Pohl, T., Lukin, M.D., Vuletić, V.: Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57 (2012)

    Article  ADS  Google Scholar 

  20. Xiao, X., Fang, M.F., Li, Y.L.: Non-Markovian dynamics of two qubits driven by classical fields: population trapping and entanglement preservation. J. Phys. B: At. Mol. Opt. Phys. 43, 185505 (2010)

    Article  ADS  Google Scholar 

  21. Sinayskiy, I., Ferraro, E., Napoli, A., Messina, A., Petruccione, F.: Non-Markovian dynamics of an interacting qubit pair coupled to two independent bosonic baths. J. Phys. A: Math. Theor. 42, 485301 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zou, H.M., Fang, M.F.: Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature. Chin. Phys. B 24, 080304 (2015)

    Article  ADS  Google Scholar 

  23. Zhen, Y.X., Luo, S.L., Yang, W.L., Liu, C., Zhu, S.Q.: Quantum speedup in a memory environment. Phys. Rev. A 89, 012307 (2014)

    Article  ADS  Google Scholar 

  24. Zou, H.M., Fang, M.F.: Analytical solution and entanglement swapping of a double Jaynes-Cummings model in non-Markovian environments. Quantum Inf. Process. 14, 2673 (2015)

    Article  ADS  MATH  Google Scholar 

  25. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. IEEE Proc. 51, 89 (1963)

    Article  Google Scholar 

  26. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  27. Zou, H.M., Fang, M.F.: Quantum discord of the two-atom system in non-Markovian environments. Phys. Scr. 90, 035104 (2015)

    Article  ADS  Google Scholar 

  28. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  29. Bellomo, B., Franco, R.L., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  30. Scala, M., Militello, B., Messina, A., Maniscalco, S., Piilo, J., Suominen, K.A.: Population trapping due to cavity losses. Phys. Rev. A 77, 043827 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Mei Zou.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No: 2010FJ3148, 11374096) and the Doctoral Science Foundation of Hunan Normal University, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, HM., Liu, Y. & Fang, MF. Population Dynamics of Excited Atoms in Dissipative Cavities. Int J Theor Phys 55, 4469–4479 (2016). https://doi.org/10.1007/s10773-016-3070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3070-3

Keywords

Navigation