Skip to main content
Log in

Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bauer, G.E.W., MacDonald, A.H., Maekawa, S.: Spin caloritronics. Solid State Commun. 150, 459–460 (2010)

    Article  ADS  Google Scholar 

  2. Bauer, G.E.W., Saitoh, E., van Wees, B.J.: Spin caloritronics[J]. Nat. Mater. 11(5), 391–399 (2012)

    Article  ADS  Google Scholar 

  3. Tserkovnyak, Y., Brataas, A., Bauer, G.E.W.: Enhanced Gilbert damping in thin ferromagnetic films[J]. Phys. Rev. Lett. 88(11), 117601 (2002)

    Article  ADS  Google Scholar 

  4. Stevens, M.J., Smirl, A.L., Bhat, R.D.R., et al.: Quantum interference control of ballistic pure spin currents in semiconductors[J]. Phys. Rev. Lett. 90(13), 136603 (2003)

    Article  ADS  Google Scholar 

  5. Hübner, J., Rühle, W.W., Klude, M., et al.: Direct observation of optically injected spin-polarized currents in semiconductors[J]. Phys. Rev. Lett. 90(21), 216601 (2003)

    Article  ADS  Google Scholar 

  6. Uchida, K., Takahashi, S., Harii, K., et al.: Observation of the spin Seebeck effect[J]. Nature 455(7214), 778–781 (2008)

    Article  ADS  Google Scholar 

  7. Uchida, K., Xiao, J., Adachi, H., et al.: Spin seebeck insulator[J]. Nat. Mater. 9(11), 894–897 (2010)

    Article  ADS  Google Scholar 

  8. Uchida, K., Adachi, H., Ota, T., et al.: Observation of longitudinal spin-Seebeck effect in magnetic insulators[J]. Appl. Phys. Lett. 97(17), 172505 (2010)

    Article  ADS  Google Scholar 

  9. Gravier, L., Serrano-Guisan, S., Reuse, F., et al.: Spin-dependent Peltier effect of perpendicular currents in multilayered nanowires[J]. Phys. Rev. B 73(5), 052410 (2006)

    Article  ADS  Google Scholar 

  10. Flipse, J., Bakker, F.L., Slachter, A., et al.: Direct observation of the spin-dependent Peltier effect[J]. Nat. Nanotechnol. 7(3), 166–168 (2012)

    Article  ADS  Google Scholar 

  11. Giazotto, F., Taddei, F., D’Amico, P., et al.: Nonequilibrium spin-dependent phenomena in mesoscopic superconductor–normal metal tunnel structures[J]. Phys. Rev. B 76(18), 184518 (2007)

    Article  ADS  Google Scholar 

  12. Zhang, H.R., Xue, H.J., Chi, F.: Spin-Polarized Transport through a quantum dot coupled to leads with Spin-Dependent electron Temperature[J]. J. Low Temp. Phys. 180(5–6), 321–329 (2015)

    Article  ADS  Google Scholar 

  13. Dejene, F.K., Flipse, J., Bauer, G.E.W., et al.: Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves[J]. Nat. Phys. 9(10), 636–639 (2013)

    Article  Google Scholar 

  14. Vera-Marun, I.J., van Wees, B.J., Jansen, R.: Spin heat accumulation induced by tunneling from a ferromagnet[J]. Phys. Rev. Lett. 112(5), 056602 (2014)

    Article  ADS  Google Scholar 

  15. van der Wiel, W.G., De Franceschi, S., Elzerman, J.M., et al.: Electron transport through double quantum dots[J]. Rev. Mod. Phys. 75(1), 1 (2002)

    Article  ADS  Google Scholar 

  16. Dong, B., Cui, H.L., Lei, X.L.: Pumped spin-current and shot-noise spectra of a single quantum dot[J]. Phys. Rev. Lett. 94(6), 066601 (2005)

    Article  ADS  Google Scholar 

  17. Liu, J., Cheng, J.: Thermal bias on the pumped spin-current in a single quantum dot[J]. Commun. Theor. Phys. 62(1), 86–90 (2014)

    Article  ADS  Google Scholar 

  18. Gurvitz, S.A., Prager, Y.S.: Microscopic derivation of rate equations for quantum transport[J]. Phys. Rev. B 53(23), 15932 (1996)

    Article  ADS  Google Scholar 

  19. Wang, B., Wang, J., Guo, H.: Quantum spin field effect transistor[J]. Phys. Rev. B 67(9), 092408 (2003)

    Article  ADS  Google Scholar 

  20. Zhang, P., Xue, Q.K., Xie, X.C.: Spin current through a quantum dot in the presence of an oscillating magnetic field[J]. Phys. Rev. Lett. 91(19), 196602 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China Project (Grant No.11564029, 11147010), the Natural Science Foundation of Inner Mongolia (Grant No.2012MS0113), and the Research Program of science and technology at Universities of Inner Mongolia Autonomous Region (Grant No.NJZY12111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, S. & Du, X. Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature. Int J Theor Phys 55, 4036–4043 (2016). https://doi.org/10.1007/s10773-016-3032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3032-9

Keywords

Navigation