Skip to main content
Log in

Controlling Collapse and Revival of Multipartite Entanglement Under Decoherence via Classical Driving Fields

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the effects of classical driving fields on the dynamics of purity, spin squeezing, and genuine multipartite entanglement (based on the Peres-Horodecki criterion ) of three two-level atoms within three separated cavities prepared in coherent states in the presence of decoherence. The three qubits are initially entangled and driven by classical fields. We obtain an analytical solution of the present system using the superoperator method. We find that the genuine multipartite entanglement measured by an entanglement monotone based on the Peres-Horodecki criterion can stay zero for a finite time and revive partially later. This phenomenon is similar to the sudden death of entanglement of two qubits and can be controlled efficiently by the classical driving fields. The amount of purity, spin squeezing, and genuine multipartite entanglement decrease with the increase of mean photon number of cavity fields. Particularly, the purity and genuine multipartite entanglement could be simultaneously improved by the classical driving fields. In addition, there is steady state genuine multipartite entanglement which can also be adjusted by the classical driving fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

  4. Liu, S.P., Li, J.H., Yu, R., Wu, Y.: Phys. Rev. A 87, 042306 (2013)

    Article  ADS  Google Scholar 

  5. Xu, J.Z., Guo, J.B., Wen, W., Bai, Y.K., Yan, F.L.: Chin. Phys. B 21, 080305 (2012)

    Article  ADS  Google Scholar 

  6. Guo, Q.Q., Chen, X.Y., Wang, Y.Y.: Chin. Phys. B 23, 050309 (2014)

    Article  ADS  Google Scholar 

  7. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Nat. Phys. 5, 19 (2009)

    Article  Google Scholar 

  8. Giovannetti, V., Lloyd, S., Maccone, L.: Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  9. Yeo, Y., Chua, W. K.: Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  10. Bancal, J.D., Brunner, N., Gisin, N., Liang, Y.C.: Phys. Rev. Lett. 106, 020405 (2011)

    Article  ADS  Google Scholar 

  11. Jungnitsch, B, Moroder, T, Gühne, O.: Phys. Rev. Lett 106, 190502 (2011)

    Article  ADS  Google Scholar 

  12. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  13. Lidar, D.A., Brun, T.A.: Quantum Error Correction. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  14. Zhang, J.S., Chen, A.X.: J. Opt. Soc. Am. B 31, 1126 (2014)

    Article  ADS  Google Scholar 

  15. Kitagawa, M., Ueda, M.: Phys. Rev. A 47, 5138 (1993)

    Article  ADS  Google Scholar 

  16. Ma, J., Wang, X., Sun, C.P., Nori, F.: Phys. Rep. 509, 89 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. Yu, T., Eberly, J.H.: Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  18. Yu, T., Eberly, J.H.: Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Moya-Cessa, H.: Phys. Rep. 432, 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Liu, Y.X., Sun, C.P., Nori, F.: Phys. Rev. A 74, 052321 (2006)

    Article  ADS  Google Scholar 

  21. Zhang, J.S., Xu, J.B.: Opt. Commun. 282, 3652 (2009)

    Article  ADS  Google Scholar 

  22. Scully, M., Zubairy, M.S.: Quantum Optics. Cambrige University Press, Cambrige (1997)

    Book  MATH  Google Scholar 

  23. Witschel, W.: Int. J. Quant. Chem. XX, 1233 (1981)

    Article  Google Scholar 

  24. Bellomo, B., Lo France, R., Compagno, G.: Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  25. Bellomo, B., Lo France, R., Compagno, G.: Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  26. Peixoto, J.G., de Faria, J.G., Nemes, M.C.: Phys. Rev. A 69, 063812 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11047115, 11365009 and 11065007), the Scientific Research Foundation of Jiangxi (Grant Nos. 20122BAB212008 and 20151BAB202020.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JS., Liu, F. & Chen, AX. Controlling Collapse and Revival of Multipartite Entanglement Under Decoherence via Classical Driving Fields. Int J Theor Phys 55, 4016–4026 (2016). https://doi.org/10.1007/s10773-016-3030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3030-y

Keywords

Navigation