Skip to main content
Log in

High Fidelity Symmetric Telecloning and Entanglement Distribution of Spin Quantum States by Weak Measurement and Reversal

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a physical realization of robust symmetric telecloning scheme for spin quantum states by employing the weak measurement and reversal (WMR) operation. Using proper WMR, the ultrahigh telecloning fidelity and long distance of quantum state transfer with certain success probability can be achieved. More interestingly, the lowest average telecloning fidelity can attain 80 %, which is almost independent of the spin chain length. We also study the properties of entanglement distribution via the spin chain for arbitrary two-qubit entangled pure states as inputs and find that the WMR operation indeed helps for protecting distributed entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bose, S.: Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  2. Giovannetti, V., Burgarth, D.: Phys. Rev. Lett. 96, 030501 (2006)

    Article  ADS  Google Scholar 

  3. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  4. Burgarth, D., Bose, S.: New J. Phys. 7, 135 (2005)

    Article  ADS  Google Scholar 

  5. Wójcik, A., Luczak, T., Kurzyński, P., Grudka, A., Gdala, T., Bednarska, M.: Phys. Rev. A 75, 022330 (2007)

    Article  ADS  Google Scholar 

  6. Bayat, A., Karimipour, V.: Phys. Rev. A 75, 022321 (2007)

    Article  ADS  Google Scholar 

  7. Wang, Q., Li, J.X., Zeng, H.S.: Chin. Phys. Lett. 25, 2770 (2008)

    Article  ADS  Google Scholar 

  8. Bayat, A., Karimipour, V.: Phys. Rev. A 71, 042330 (2005)

    Article  ADS  Google Scholar 

  9. Osborne, T.J., Linden, N.: Phys. Rev. A 69, 052315 (2004)

    Article  ADS  Google Scholar 

  10. Aharonov, Y., Albert, D.Z., Vaidman, L.: Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  11. Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  12. Oreshkov, O., Brun, T.A.: Phys. Rev. Lett. 95, 110409 (2005)

    Article  ADS  Google Scholar 

  13. Xiao, X., Feng, M.: Phys. Rev. A 83, 054301 (2011)

    Article  ADS  Google Scholar 

  14. Palacios-Laloy, A., Mallet, F., Nguyen, F., Bertet, P., Vion, D., Esteve, D., Korotkov, A.N.: Nat. Phys. 6, 422 (2010)

    Article  Google Scholar 

  15. Lundeen, J.S., Steinberg, A.M.: Phys. Rev. Lett. 102, 020404 (2009)

    Article  ADS  Google Scholar 

  16. Hosten, O., Kwiat, P.: Science 319, 787 (2008)

    Article  ADS  Google Scholar 

  17. Dixon, P.B., Starling, D.J., Jordan, A.N., Howell, J.C.: Phys. Rev. Lett. 102, 173601 (2009)

    Article  ADS  Google Scholar 

  18. Lundeen, J.S., Sutherland, B., Patel, A., Stewart, C., Bamber, C.: Nature (London) 474, 188 (2011)

    Article  Google Scholar 

  19. Paz-Silva, G.A., Rezakhani, A.T., Dominy, J.M., Lidar, D.A.: Phys. Rev. Lett. 108, 080501 (2012)

    Article  ADS  Google Scholar 

  20. Korotkov, A.N., Jordan, A.N.: Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  21. Man, Z.X., Xia, Y.J., An, N.B.: Phys. Rev. A 86, 052322 (2012)

    Article  ADS  Google Scholar 

  22. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  23. Yao, C.M., Ma, Z.H., Chen, Z.H., Serafini, A.: Phys. Rev. A 86, 022312 (2012)

    Article  ADS  Google Scholar 

  24. He, Z., Yao, C.M., Zou, J.: Phys. Rev. A 88, 044304 (2013)

    Article  ADS  Google Scholar 

  25. Wang, Q., Yao, C.M.: Commun. Theor. Phys. 61, 464 (2014)

    Article  ADS  Google Scholar 

  26. Wang, Q., He, Z., Yao, C.M.: Phys. Scr. 90, 055102 (2015)

    Article  ADS  Google Scholar 

  27. Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Rev. A 60, 1888 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  28. Cheong, Y.W., Lee, S.W.: Phys. Rev. Lett. 109, 150402 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grants No. 61475045, and No. 61505053), the Natural Science Foundation of Hunan Province, China (Grants No. 2016JJ3015, No. 2015JJ3092 and No. 2015JJ6006), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 15C0937), and the School Foundation from the Hunan University of Arts and Science (Grants No. 14YB01 and No. 14ZD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., He, Z., Yao, CM. et al. High Fidelity Symmetric Telecloning and Entanglement Distribution of Spin Quantum States by Weak Measurement and Reversal. Int J Theor Phys 55, 3737–3745 (2016). https://doi.org/10.1007/s10773-016-3002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3002-2

Keywords

Navigation