Skip to main content
Log in

Quantum Breathers in Anisotropy Ferromagnetic Chains with Second-Order Coupling

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Under considering the next-nearest-neighbor interaction, quantum breathers in one-dimensional anisotropy ferromagnetic chains are theortically studied. By introducing the Dyson-Maleev transformation for spin operators, a map to a Heisenberg ferromagnetic spin lattice into an extended Bose–Hubbard model can be established. In the case of a small number of bosons, by means of the numerical diagonalization technique, the energy spectrum of the corresponding extended Bose–Hubbard model containing two bosons is calculated. When the strength of the single-ion anisotropy is enough large, a isolated single band appears. This isolated single band corresponds to two-boson bound state, which is the simplest quantum breather state. It is shown that the introduction of the next-nearest-neighbor interaction will lead to interesting band structures. In the case of a large number of bosons, by applying the time-dependent Hartree approximation, quantum breather states for the system is constructed. In this case, the effect of the next-nearest-neighbor interaction on quantum breathers is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang, H., Tang, D., Knize, R.J., Zhao, L., Bao, Q., Loh, K.P.: Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl. Phys. Lett. 96, 111112 (2010)

    Article  ADS  Google Scholar 

  2. Zhao, C., Zou, Y., Chen, Y., Wang, Z., Lu, S., Zhang, H., Wen, S., Tang, D.: Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker. Opt. Express 20, 27888–27895 (2012)

    Article  ADS  Google Scholar 

  3. Lü, X., Tian, B.: Novel behavior and properties for the nonlinear pulse propagation in optical fibers. Europhys. Lett. 97, 10005 (2012)

    Article  Google Scholar 

  4. Lü, X., Peng, M.: Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics. Commun. Nonlinear Sci. Numer. Simul. 18, 2304–2312 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Lü, X., Peng, M.: Nonautonomous motion study on accelerated and decelerated solitons for the variablecoefficient Lenells-Fokas model. Chaos 23, 013122 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Lü, X., Peng, M.: Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications. Nonlinear Dyn 73, 405 (2013)

    Article  MATH  Google Scholar 

  7. Wang, L., Zhu, Y.-J., Wang, Z.-Q., Xu, T., Qi, F.-H., Xue, Y.-S.: Asymmetric Rogue Waves, Breather-to-Soliton Conversion, and Nonlinear Wave Interactions in the Hirota-Maxwell-Bloch System. J. Phys. Soc. Jpn. 85, 024001 (2016)

    Article  ADS  Google Scholar 

  8. Wang, L., Li, X., Qi, F.-H., Zhang, L.-L.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell-Bloch equations. Annals of Physics 359, 97–114 (2015)

    Article  MathSciNet  Google Scholar 

  9. Wang, L, Zhu, Y –J, Qi, F –H, Li, M., Guo, R.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Chaos 25, 063111 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Wang, L, Zhang, J –H, Wang, Z –Q., Liu, C., Li, M., Qi, F.–H., Guo R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 012214 (2016)

    Article  ADS  Google Scholar 

  11. Flach, S., Gorbach, A.V.: Discrete breathers – advances in theory and applications. Phys. Rep. 467, 1–116 (2008)

    Article  ADS  MATH  Google Scholar 

  12. Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)

    Article  ADS  Google Scholar 

  13. Page, J.B.: Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems. Phys. Rev. B 41, 7835–7838 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  14. Mackay, R.S., Aubry, S.: Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlineaity 7, 1623–1643 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Huang, G.X., Shi, Z.P., Xu, Z.X.: Asymmetric intrinsic localized modes in a homogeneous lattice with cubic and quartic anharmonictity. Phys. Rev. B 47, 14561–14564 (1993)

    Article  ADS  Google Scholar 

  16. Yoshimura, K.: Existence and stability of discrete breathers in diatomic Fermi–Pasta–Ulam type lattices. Nonlinearity 24, 293–317 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Flach, S.: Existence of localized excitations in nonlinear Hamiltonian lattices. Phys. Rev. E 51, 1503–1507 (1995)

    Article  ADS  Google Scholar 

  18. Feng, B.F., Kawahara, T.: Discrete breathers in two-dimensional nonlinear lattices. Wave Motion 45, 68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sepulchre, J.A., MacKay, R.S.: Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators. Nonlinearity 10, 679–713 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Butt, I.A., Wattis, J.A.D.: Discrete breathers in a two-dimensional Fermi–Pasta–Ulam lattice. J. Phys. A: Math. Gen. 39, 4955–4984 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wallis, R.F., Mills, D.L., Boardman, A.D.: Intrinsic localized spin modes in ferromagnetic chains with on-site anisotropy. Phys. Rev. B 52, R3828–R3831 (1995)

    Article  ADS  Google Scholar 

  22. Lai, R., Kiselev, S.A., Sievers, A.J.: Intrinsic localized spin-wave resonances in ferromagnetic chains with nearest- and next-nearest-neighbor exchange interactions. Phys. Rev. B 56, 5345–5354 (1997)

    Article  ADS  Google Scholar 

  23. Rakhmanova, S.V., Shchegrov, A.V.: Intrinsic localized modes of bright and dark types in ferromagnetic Heisenberg chains. Phys. Rev. B 57, R14012–R14015 (1998)

    Article  ADS  Google Scholar 

  24. Speight, J.M., Sutcliffe, P.M.: Discrete breathers in anisotropic ferromagnetic spin chains. J. Phys. A: Math. Ge.n 34, 10839–858 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Lakshmanan, M., Subash, B., Saxena, A.: Intrinsic localized modes of a classical discrete anisotropic Heisenberg ferromagnetic spin chain. Phys. Lett. A 378, 1119 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Lai, R., Kiselev, S.A., Sievers, A.J.: Intrinsic localized spin-wave modes in antiferromagnetic chains with single-ion easy-axis anisotropy. Phys. Rev. B 54, R12665–R12668 (1996)

    Article  ADS  Google Scholar 

  27. Lai, R., Sievers, A.J.: Modulational instability of nonlinear spin waves in easy-axis antiferromagnetic chains. Phys. Rev. B 57, 3433–3443 (1998)

    Article  ADS  Google Scholar 

  28. Kim, S.W., Kim, S.: Internal localized eigenmodes on spin discrete breathers in antiferromagnetic chains with on-site easy-axis anisotropy. Phys. Rev. B 66, 212408 (2002)

    Article  ADS  Google Scholar 

  29. Lai, R., Kiselev, S.A., Sievers, A.J.: Intrinsic localized spin-wave resonances in ferromagnetic chains with nearest- and next-nearest-neighbor exchange interactions. Phys. Rev. B 56, 5345–5354 (1997)

    Article  ADS  Google Scholar 

  30. Khalack, J.M., Zolotaryuk, Y., Christiansen, P.L.: Discrete breathers in classical ferromagnetic lattices with easy-plane anisotropy. Chaos 13, 683–692 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Fleurov, V., Zolotaryuk, Y., Flach, S.: Discrete breathers in classical spin lattices. Phys. Rev. B 63, 214422 (2001)

    Article  ADS  Google Scholar 

  32. Fleurov, V.: Discrete quantum breathers: what do we know about them? Chaos 13, 676 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Djoufack, Z.I., Kenfack-Jiotsa, A., Nguenang, J.P., Domngang, S.: Quantum signatures of breathers in a finite Heisenberg spin chain. J. Phys. Condens. Matter 22, 205502 (2010)

    Article  ADS  Google Scholar 

  34. Djoufack, Z.I., Kenfack-Jiotsa, A., Nguenang, J.P.: Quantum breathers in a finite Heisenberg spin chain with antisymmetric interactions. Eur. Phys. J. B 85, 96 (2012)

    Article  ADS  Google Scholar 

  35. Tang, B., Li, D.-J., Tang, Y.: Quantum breathers in Heisenberg ferromagnetic chains with Dzyaloshinsky-Moriya interaction. Chaos 24, 023113 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  36. Tang, B., Li, D.-J., Tang, Y.: Controlling quantum breathers in Heisenberg ferromagnetic spin chains via an oblique magnetic field. Phys. Status Solidi B 251, 1063–1068 (2014)

    Article  ADS  Google Scholar 

  37. Dyson, F.J.: General theory of spin-wave interactions. Phys. Rev. 102, 1217–1230 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  38. Dyson, F.J.: Thermodynamic behavior of an ideal ferromagnet. Phys. Rev. 102, 1230–1244 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Scott, A.C., Eilbeck, J.C., Gilhøj, H.: Quantum lattice solitons. Physica D 78, 194–213 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Wright, E., Eilbeck, J.C., Hays, M.H., Miller, P.D., Scott, A.C.: The quantum discrete self-trapping equation in the Hartree approximation. Physica D 69, 18 (1993)

    Article  ADS  MATH  Google Scholar 

  41. Remoissenet, M.: Low-amplitude breather and envelope solitons in quasi-one-dimensional physical models. Phys. Rev. B 33, 2386–2392 (1986)

    Article  ADS  Google Scholar 

  42. Remoissenet, M.: Waves Called Solitons. Concepts and Experiments, 2nd edn., pp 238–239. Springer-Verlag (1996)

  43. Pinto, R.A., Flach, S.: Quantum breathers in capacitively coupled Josephson junctions: Correlations, number conservation, and entanglement. Phys. Rev. B 77, 024308 (2008)

    Article  ADS  Google Scholar 

  44. Proville, L.: Quantum breathers in a nonlinear Klein Gordon lattice. Physica D 216, 191–199 (2006)

    Article  ADS  MATH  Google Scholar 

  45. Riseborough, P.S.: Quantized breather excitations of Fermi-Pasta-Ulam lattices. Phys. Rev. E 85, 011129 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 11264012 and the Talents Recruitment Program of Jishou University under Grant No. jsdxrcyjkyxm 201501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B. Quantum Breathers in Anisotropy Ferromagnetic Chains with Second-Order Coupling. Int J Theor Phys 55, 3657–3671 (2016). https://doi.org/10.1007/s10773-016-2995-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-2995-x

Keywords

Navigation