Skip to main content
Log in

Resonance of Gaussian Electromagnetic Field to the High Frequency Gravitational Waves

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider a Gaussian Beam (GB) resonant system for high frequency gravitational waves (HFGWs) detection. At present, we find the optimal signal strength in theory through setting the magnetic component of GB in a standard gaussian form. Under the synchro-resonance condition, we study the signal strength (i.e., transverse perturbative photon fluxes) from the relic HFGWs (predicted by ordinary inflationary model) and the braneworld HFGWs (from braneworld scenarios). Both of them would generate potentially detectable transverse perturbative photon fluxes (PPFs). Furthermore we find optimal system parameters and the relationship between frequency and effective width of energy fluxes accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Braginskii, V.B., Menskii, M.B., et al.: JETP Lett. 13, 417 (1971)

    ADS  Google Scholar 

  2. Pegoraro, F., Picasso, E., Radicati, L.A.: J. Phys. A: Math. Gen. 11, 10 (1978)

    Article  Google Scholar 

  3. Grishchuk, L.P.: arXiv:gr-qc/0306013

  4. Li, F.Y., et al.: Phys. Rev. D 80, 064013 (2009)

    Article  ADS  Google Scholar 

  5. Clive Woods, R., et al.: J. Mod. Phys. 2, 498–518 (2011)

    Article  Google Scholar 

  6. Wen, H., Li, F.Y., Fang, Z.Y.: Phys. Rev. D 89, 104025 (2014)

    Article  ADS  Google Scholar 

  7. Zhang, Y., Er, X.Z., Xia, T.Y., Zhao, W., Miao, H.X.: Class. Quantum Grav. 23, 3783 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zhang, Y., Maio, H.X.: Phys. Rev. D 75, 104009 (2007)

    Article  ADS  Google Scholar 

  9. Tong, M.L., Zhang, Y.: Phys. Rev. D 80, 084022 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Giovannini, M.: Class. Quantum Grav. 31, 225002 (2014)

    Article  ADS  Google Scholar 

  11. Hanson, D., et al.: SPTpol Collaboration. Phys. Rev. Lett. 111, 141301 (2013)

    Article  ADS  Google Scholar 

  12. Li, F.Y., et al.: Eur. Phys. J. C 56, 407 (2008)

    Article  ADS  Google Scholar 

  13. Li, F.Y., Tang, M.X., Shi, D.P.: Phys. Rev. D 67, 104008 (2003)

    Article  ADS  Google Scholar 

  14. Li, J., et al.: Gen. Relativ. Gravit. 43, 2209–2222 (2011)

    Article  ADS  Google Scholar 

  15. Clarkson, C., Seahra, S.S.: Classical Quantum Gravity 24, F33 (2007)

    Article  Google Scholar 

  16. Seahra, S.S.: Phys. Rev. D 72, 066002 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Boccaletti, D., et al.: Nuovo Cim. B 70, 129 (1970)

    Article  ADS  Google Scholar 

  18. Yariv, A. Quantum Electronics, 2nd ed. Wiley, New York (1975)

  19. Wen, W.J., et al.: Phys. Rev. Lett. 89, 223901 (2002)

    Article  ADS  Google Scholar 

  20. Zhou, L., et al.: Appl. Phys. Lett. 82, 1012 (2003)

    Article  ADS  Google Scholar 

  21. Hou, B., et al.: Opt. Express 13, 9149 (2005)

    Article  ADS  Google Scholar 

  22. Giovannini, M.: Phys. Rev. D 60, 123511 (1999)

    Article  ADS  Google Scholar 

  23. Giovannini, M.: Class. Quantum Grav. 16, 2905 (1999)

    Article  ADS  Google Scholar 

  24. Riazuelo, A., Uzan, J.P.: Phys. Rev. D 62, 083506 (2000)

    Article  ADS  Google Scholar 

  25. Peebles, P., Vilenkin, A.: Phys. Rev. D 59, 063505 (1999)

    Article  ADS  Google Scholar 

  26. Ostriker, J.P., Sternhardt, P.J.: Sci. Am. Int. Ed. 284, 46 (2001)

    ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by FAPESP No. 2012/08934-0, CNPq, CAPES,National Natural Science Foundation of China No. 11205254, No. 11178018, No.11573022 and No.11375279, and the Fundamental Research Funds for the Central Universities 106112015CDJRC131216 and CDJRC10300003, and Chongqing Postdoctoral Science Foundation (No.Xm2015027), and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (No.Y5KF181CJ1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, L., Lin, K. et al. Resonance of Gaussian Electromagnetic Field to the High Frequency Gravitational Waves. Int J Theor Phys 55, 3506–3514 (2016). https://doi.org/10.1007/s10773-016-2977-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-2977-z

Keywords

Navigation