International Journal of Theoretical Physics

, Volume 55, Issue 4, pp 2219–2236 | Cite as

Gravitational Lensing in the Strong Field Limit for Kar’s Metric

  • Carlos A. Benavides
  • Alejandro Cárdenas-Avendaño
  • Alexis Larranaga


In this paper we calculate the strong field limit deflection angle for a light ray passing near a scalar charged spherically symmetric object, described by a metric which comes from the low-energy limit of heterotic string theory. Then, we compare the expansion parameters of our results with those obtained in the Einstein’s canonical frame, obtained by a conformal transformation, and we show that, at least at first order, the results do not agree.


Physics of black holes Strong lensing Photon sphere 



Thanks are due to K. S Virbhadra and F. A. Diaz for valuable discussions and helpful correspondence, and to the anonymous referees for their constructive inputs. This research was supported by the National Astronomical Observatory, National University of Colombia and one of us, A.C., also thanks the Department of Mathematics, Konrad Lorenz University for financial support.


  1. 1.
    Misner, C., Thorne, K., Wheeler, J.A.: Gravitation. W. H. Freeman and Company, California (1973)Google Scholar
  2. 2.
    Will, C.M.: The Confrontation between General Relativity and Experiment. Living Rev. Relativity 9, 3 (2006)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Psaltis, D.: Two approaches to testing general relativity in the strong-field regime. J. Phys.: Conf. Ser. 189, 012033 (2009)ADSGoogle Scholar
  4. 4.
    Einstein, A., Lorentz, H.A., Weyl, H., Minkowski, H.: The principle of Relativity. Dover Publications (1952)Google Scholar
  5. 5.
    Walsh, D., Carswell, R.F., Weyman, R.J.: 0957 + 561 A, B - Twin quasistellar objects or gravitational lens. Nature 279, 381–384 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    Fort, B., Miller, Y.: Arc(let)s in clusters of galaxies. Astron Astrophys. Rev. 5, 239–292 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    Narasimha, D.: Gravitational microlensing. Bull. Astr. Soc. India 23, 489–502 (1995)ADSGoogle Scholar
  8. 8.
    Bozza, V.: Gravitational lensing in the strong field limit. Phys. Rev. D 66, 103001 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Darwin, C.: The Gravity Field of a Particle. Proc. Roy. Soc. London A249, 180 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Darwin, C.: The Gravity Field of a Particle. II. Proc. Roy. Soc. London A263, 39 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Atkiston, R.: On light tracks near a very massive star. Astron. J. 70, 517–523 (1965)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Virbhadra, K.S.: Relativistic images of Schwarzschild black hole lensing. Phys. Rev. D 79, 083004 (2009)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Doeleman, S.S., Fish, V.L., Broderick, A.E., Loeb, A., Rogers, A.E.E.: Detecting flaring structures in Sagittarius A* with high-frequency VLBI. Astrophys. J. 695, 59–74 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Fish, V.L., Doeleman, S.S.: Observing a black hole event horizon: (sub)millimeter VLBI of Sgr A*. Proc. IAU Symp. 261, 271–276 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Will, C.M.: Testing the General Relativistic “No Hair” Theorems Using the Galactic Center Black Hole Sagittarius A*. Astrophys. J. 674, L25 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Broderick, A.E., Johannsen, T., Loeb, A., Psaltis, D.: Testing the No-hair Theorem with Event Horizon Telescope Observations of Sagittarius A*. Astrophys. J. 784, 7 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Bozza, V., Capozziello, S., Iovane, G., Scarpetta, G.: Strong field limit of black hole gravitational lensing. Gen. Rel. Grav. 33, 1844–1854 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Virbhadra, K.S., Ellis, G.F.R.: Schwarzschild black hole lensing. Phys. Rev. D 62, 084003 (2000)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Virbhadra, K.S., Ellis, G.F.R.: Gravitational lensing by naked singularities. Phys. Rev. D 65, 103004 (2002)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Eiroa, E.F., Romero, G.E., Torres, D.F.: Reissner-Nordstrm black hole lensing. Phys. Rev. D 66, 024010 (2002)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Bahadra, A.: Gravitational lensing by a charged black hole of string theory. Phys. Rev. D 67, 103009 (2003)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Whisker, R.: Strong gravitational lensing by braneworld black holes. Phys. Rev. D 71, 064004 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Kar, S.: Naked singularities in low-energy, effective string theory. Class. Quantum Grav. 16, 101–115 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wyman, M.: Static spherically symmetric scalar fields in general relativity. Phys. Rev. D 24, 839 (1981)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Virbhadra, K.S.: Janis Newman Winicour and Wyman Solutions are the Same. Int. J. Mod. Phys. A 12, 4831–4836 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Virbhadra, K.S.: Nature of singularity in Einstein massless scalar theory. Int. J. Mod. Phys. D 6, 357–362 (1997)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Virbhadra, K.S.: Naked singularities and Seiferts conjecture. Phys. Rev. D 60, 104041 (1999)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Virbhadra, K.S., Keeton, C.R.: Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities. Phys. Rev. D 77, 124014 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Janis, A.I., Newman, E.T., Winicour, J.: Reality of the Schwarzschild Singularity. Phys. Rev. Lett. 20, 878 (1968)ADSCrossRefGoogle Scholar
  30. 30.
    Alvarez, E., Conde, J.: Are the string and Einstein frames equivalent. Int. J. Mod. Phys. A 12, 4831–4836 (1997)CrossRefGoogle Scholar
  31. 31.
    Virbhadra, K.S., Narasimha, D., Chitre, S.M.: Role of the scalar field in gravitational lensing. Astron. Astrophys. 337, 1–8 (1998)ADSGoogle Scholar
  32. 32.
    Claudel, C.M., Virbhadra, K., Ellis, G.: The geometry of photon surfaces. J. Math. Phys. 42, 818–838 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Brans, C., Dicke, C.H.: Mach’s Priciple and Relativistic Theory of Gravitation. Phys. Rev. 124, 925 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Jordan, P.: Zum gegenwiirtigen Stand der Diracschen kosmologischen Hypothesen. Z. Phys. 157 (1959)Google Scholar
  35. 35.
    Dicke, R.H.: Mach’s Principle and Invariance under Transformation of Units. Phys. Rev. 125, 2163 (1962)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Damour, T., Esposito-Farese, G.: Tensor-multi-scalar theories of gravitation. Class. Quant. Grav. 9, 2093 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Faraoni, V., Gunzig, E.: Einstein frame or Jordan frame? Int. J. Theor. Phys. 38, 217 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Capozziello, S., Martin-Moruno, P.C., Rubano, P.: Physical non-equivalence of the Jordan and Einstein frames. Phys. Lett. B 689, 117–121 (2010)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Postma, M., Volponi, M.: Equivalence of the Einstein and Jordan frames. Phys. Rev. D 90, 103516 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Faroni, V., Gunzig, E.: Einstein frame or Jordan frame? J. Theor. Phys. 38, 217 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Magnano, G., Sokolowski, L.M.: On Physical Equivalence between Nonlinear Gravity Theories and a General Relativistic Self Gravitating Scalar Field. Phys. Rev. D 50, 5039–5059 (1994)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Corda, C.: Interferometric detection of gravitational waves: the definitive test for General Relativity. Int. J. Mod. Phys. D 18, 2275–2282 (2009)ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    Corda, C.: Gravitational wave astronomy: the definitive test for the ’Einstein frame versus Jordan frame’ controversy. Astrop. Phys. 34, 412–419 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Quiros, I., Garcia-Salcedo, R.: The conformal transformations controversy: what are we missing? Gen. Relativ. Gravit. 45, 489–518 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Eisenhouer, F., et al.: SPIE Conf. Ser 7013 (2008)Google Scholar
  46. 46.
    Gillisen, S., et al.: Proc. SPIE 7734. Optical and Infrared Interferometry II (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Carlos A. Benavides
    • 1
  • Alejandro Cárdenas-Avendaño
    • 2
  • Alexis Larranaga
    • 1
  1. 1.Universidad Nacional de ColombiaBogotáColombia
  2. 2.Fundacion Universitaria Konrad LorenzBogotáColombia

Personalised recommendations