International Journal of Theoretical Physics

, Volume 55, Issue 3, pp 1897–1911 | Cite as

Quantum Measurement and Initial Conditions

  • Ovidiu Cristinel StoicaEmail author


Quantum measurement finds the observed system in a collapsed state, rather than in the state predicted by the Schrödinger equation. Yet there is a relatively spread opinion that the wavefunction collapse can be explained by unitary evolution (for instance in the decoherence approach, if we take into account the environment). In this article it is proven a mathematical result which severely restricts the initial conditions for which measurements have definite outcomes, if pure unitary evolution is assumed. This no-go theorem remains true even if we take the environment into account. The result does not forbid a unitary description of the measurement process, it only shows that such a description is possible only for very restricted initial conditions. The existence of such restrictions of the initial conditions can be understood in the four-dimensional block universe perspective, as a requirement of global self-consistency of the solutions of the Schrödinger equation.


Foundations of quantum mechanics Measurement theory Contextuality Entanglement and quantum nonlocality EPR paradox Bell inequalities Quantum mechanics 



The author cordially thanks Eliahu Cohen, Hans-Thomas Elze, Florin Moldoveanu, and the referees, for very helpful comments and suggestions.


  1. 1.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press (1955)Google Scholar
  2. 2.
    d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics. W. A. Benjamin, Reading, Mass (1976)Google Scholar
  3. 3.
    Joos, E., Zeh, H.: Z. Phys. B: Condens. Matter 59(2), 223 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    Zeh, H.: In: Ferrero, M., van der Merwe, A. (eds.) New Developments on Fundamental Problems in Quantum Physics, pp. 441–451. Springer (1997)Google Scholar
  5. 5.
    Zurek, W.H.: Phil. Trans. Roy. Soc. London Ser. A A356, 1793 (1998)ADSMathSciNetGoogle Scholar
  6. 6.
    Everett, H.: Rev. Mod. Phys. 29(3), 454 (1957). doi: 10.1103/RevModPhys.29.454 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Everett, H.: The Many-Worlds Hypothesis of Quantum Mechanics. Press (1973)Google Scholar
  8. 8.
    de Witt, B.S.: The Many-Universes Interpretation of Quantum Mechanics (1971)Google Scholar
  9. 9.
    de Witt, B., Graham, N.: The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton series in physics, Princeton (1973)Google Scholar
  10. 10.
    Griffiths, R.: J. Stat. Phys. 36(1), 219 (1984)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Omnes, R.: J. Stat. Phys. 53(3–4), 893 (1988)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Gell-Mann, M., Hartle, J.: In: Proceedings of the 25th International Conference on High Energy Physics, Singapore (1990)Google Scholar
  13. 13.
    Tegmark, M., Wheeler, J.A.: Sci. Am. 284(2), 68 (2001)CrossRefGoogle Scholar
  14. 14.
    Stoica, O.C.: PhilSci Archive (2008). 00004344/
  15. 15.
    Stoica, O.C.: Noema. Romanian Committee for the History and Philosophy of Science and Technologies of the Romanian Academy XI, 431 (2012). http://www. Google Scholar
  16. 16.
    ’t Hooft, G.: Arxiv preprint arXiv:1112.1811 (2011)
  17. 17.
    ’t Hooft, G.: Arxiv preprint arXiv:1405.1548 (2014)
  18. 18.
    Adler, S.: Philos, Stud. Hist. Mod. Phys. 34(1), 135 (2003)CrossRefGoogle Scholar
  19. 19.
    Schlosshauer, M.: Rev. Mod. Phys. 76(4), 1267 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Schlosshauer, M.: Decoherence and the Quantum-To-Classical Transition. Springer (2007)Google Scholar
  21. 21.
    Schlosshauer, M.: Elegance and Enigma: The Quantum Interviews. Springer (2011)Google Scholar
  22. 22.
    Einstein, A., Podolsky, B., Rosen, N.: Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 47, 777–780 (1935)ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Bohm, D.: Quantum Th, 611–623 (1951)Google Scholar
  24. 24.
    Bell, J.: Physics 1(3), 195 (1964)Google Scholar
  25. 25.
    Aharonov, Y., Cohen, E., Grossman, D., Elitzur, A.: Ann. Phys. 355, 258 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Aharonov, Y., Bergmann, P., Lebowitz, J.: Physical Review 134, 1410 (1964)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Aharonov, Y., Vaidman, L.: Time in Quantum Mechanics (Springer) (2007)Google Scholar
  28. 28.
    Wheeler, J.A., Marlow, A.R.: Mathematical Foundations of Quantum Theory (1978)Google Scholar
  29. 29.
    de Beauregard, O.: C. R. Acad. Sci. 236, 1632–34 (1953)zbMATHGoogle Scholar
  30. 30.
    Rietdijk, C.: Found. Phys. 8(7–8), 615 (1978)ADSCrossRefGoogle Scholar
  31. 31.
    Aharonov, Y., Albert, D., Vaidman, L.: Phys. Rev. Lett. 60(14), 1351 (1988)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Aharonov, Y., Vaidman, L.: J. Phys. A 24, 2315 (1991)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Aharonov, Y., Cohen, E., Gruss, E., Landsberger, T.: Quantum Studies: Mathematics and Foundations 1(1–2), 133 (2014)zbMATHCrossRefGoogle Scholar
  34. 34.
    Elze, H.T.: Phys. Rev. A 89(1), 012111 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Conway, J., Kochen, S.: Found. Phys. 36, 1441 (2006). arXiv:quant-ph/0604079 ADSzbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Stoica, O.C.: Foundational Questions Institute, “The Nature of Time” essay contest (2008)
  37. 37.
    Stoica, O.C.: In: Aguirre, A., Foster, B., Merali, Z. (eds.) It From Bit or Bit From It?: On Physics and Information, pp. 51–64. Springer (2015)Google Scholar
  38. 38.
    Aaronson, S.: In: Cooper, S.B., Hodges, A. (eds.) To appear in “The Once and Future Turing: Computing the World,” a collection. arXiv:1306.0159 (2013)
  39. 39.
    Stoica, O.C.: TM 2012 – The Time Machine Factory [unspeakable, speakable] on Time Travel in Turin, (EPJ Web of Conferences), vol. 58, p. 01017 (2013)Google Scholar
  40. 40.
    Arnowitt, R., Deser, S., Misner, C.W.: Gen. Relativ. Gravitation 40(9), 1997 (2008)ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    Schrödinger, E.: Phys. Rev. 28, 1049 (1926). doi: 10.1103/PhysRev.28.1049 ADSzbMATHCrossRefGoogle Scholar
  42. 42.
  43. 43.
    Bredon, G.: Sheaf Theory, vol. 170. Springer (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Horia Hulubei National Institute for Physics and Nuclear EngineeringBucharestRomania

Personalised recommendations