Skip to main content
Log in

‘Majorana Mass’ Fermions as Untrue Majorana Particles, Rather Endowed with Pseudoscalar-Type Charges than Genuinely Neutral

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The idea of a ‘Majorana mass’ to make a chiral neutrino really neutral is here reconsidered. It is pointed out that such an approach, unlike Majorana’s (non-chiral) old one, does not strictly lead, in general, to a true self-conjugate particle. This can be seen on directly using the basic definition (or fundamental representation) of charge conjugation C in Quantum Field Theory, as an operation just acting on annihilation and creation operators and just expressing particle–antiparticle interchange. It is found, indeed, that the ‘active’ and ‘sterile’ whole fields which can be obtained from mixing the chiral components of two mutually charge-conjugate Dirac fields are themselves ‘charge conjugate’ to each other (rather than individually self-conjugate). These fields, taken as mass eigenfields (as in the ‘Majorana mass’ case), are shown to describe particles carrying pseudoscalar-type charges and being neutral relative to scalar-type charges only. For them, ‘CP symmetry’ would be nothing but pure mirror symmetry, and C violation (already implied in their respective ‘active’ and ‘sterile’ behaviors) should then involve time-reversal violation as well. The new (no longer strictly chargeless) ‘Majorana mass’ neutrino model still proves, however, neither to affect the usual expectation for a neutrinoless double β-decay, nor to prevent ‘active’ and ‘sterile’ neutrino varieties from generally taking different mass values. One has, on the other hand, that any fermion being just a genuine (i.e. really self-conjugate) Majorana particle cannot truly exist in two distinct—‘active’ and ‘sterile’—versions, and it can further bear only a unified mass kind which may at once be said to be either a ‘Majorana-like’ or a ‘Dirac-like’ mass kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Majorana, E.: Nuovo Cimento 14, 171 (1937)

    Article  Google Scholar 

  2. Jehle, H.: Phys. Rev. 75, 1609 (1949)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Serpe, J.: Phys. Rev. 76, 1538 (1949)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. See e.g. Esposito, S.: Int. J. Mod. Phys. A 13, 5023 (1998); Esposito, S., Tancredi, N.: Eur. Phys. J. C 4, 221 (1998)

  5. Gell-Mann, M., Ramond, P., Slansky, R.: In: Freeman, D.Z., van Nieuwenhuizen, P. (eds.) Supergravity. North-Holland, Amsterdam (1979)

  6. Mourik, V., Zuo, K., Frolov, S. M., Brissard, S. R., Bakkers, E. P. A. M., Kouwenhoven, L. P.: Science 336, 1003 (2012)

    Article  ADS  Google Scholar 

  7. Brouwer, P. W.: Science 336, 989 (2012)

    Article  ADS  Google Scholar 

  8. Williams, J. R., Bestwick, A. J., Gallagher, P., Hong, S. S., Cui, Y., Bleich, A. S., Analytis, J. G., Fisher, I. R., Goldhaber-Gordon, D.: Phys. Rev. Lett. 109, 056803 (2012)

    Article  ADS  Google Scholar 

  9. Rokhinson, L. P., Liu, X., Furdyna, J. K.: Nat. Phys. 8, 795 (2012)

    Article  Google Scholar 

  10. Das, A., Ronen, Y., Most, Y., Oreg, Y., Heiblum, M., Shtrikman, H.: Nat. Phys. 8, 887 (2012)

    Article  Google Scholar 

  11. Deng, M. T., Yu, C. L., Huang, G. Y., Larsson, M., Caroff, P., Xu, H. Q.: Nano Lett. 12, 6414 (2012)

    Article  ADS  Google Scholar 

  12. Esposito, S.: Europhys. Lett. 102, 17006 (2013)

    Article  ADS  Google Scholar 

  13. See e.g. (no matter for some different notations therein used): Merzbacher, E.: Quantum Mechanics, 2nd edn, pp. 584,585. Wiley, New York (1970)

  14. Dvornikov, M.: Found. Phys. 42, 1469 (2012). arXiv: http://arxiv.org/abs/1106.3303 [hep-th]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Dvoeglazov, V.V.: J. Phys: Conf. Series 343, 012033 (2012)

    ADS  Google Scholar 

  16. Glashow, S. L.: Nucl. Phys. 22, 579 (1961)

    Article  Google Scholar 

  17. Weinberg, S.: Phys. Rev. Lett. 19, 1264 (1967)

    Article  ADS  Google Scholar 

  18. Salam, A.: In: Svartholm, N. (ed.) Proceedings of the Eighth Nobel Symposium on Elementary Particle Theory, p 367. Almquist and Wiksell, Stockholm (1968)

  19. Bilenky, S. M., Petcov, S. T.: Rev. Mod. Phys. 59, 671 (1987)

    Article  ADS  Google Scholar 

  20. Giunti, C., Kim, C.W.: Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  21. McLennan, J. A. Jr.: Phys. Rev. 106, 821 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Case, K.M.: Phys. Rev. 107, 307 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Feynman, R. P., Gell-Mann, M.: Phys. Rev. 109, 193 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Marshak, R. E., Sudarshan, E. C. G.: Phys. Rev. 109, 1860 (1958)

    Article  ADS  Google Scholar 

  25. Sakurai, J.J.: Nuovo Cimento 7, 649 (1958)

    Article  Google Scholar 

  26. See e.g. Sakurai, J.J.: Invariance Principles and Elementary Particles, pp. 122, 129–132. Princeton University Press, Princeton (1964)

  27. Dvoeglazov, V.V.: Mod. Phys. Lett. A 12, 2741 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Itzykson, C., Zuber, J.: Quantum Field Theory, pp 87–89. New York (1985)

  29. Barut, A. O., Ziino, G.: Mod. Phys. Lett. A 8, 1011 (1993)

    Article  ADS  Google Scholar 

  30. Ziino, G.: Int. J. Theor. Phys. 45, 1993 (2006)

    Article  MathSciNet  Google Scholar 

  31. Ziino, G.: Ann. Fond. Louis de Broglie 31, 169 (2006)

    Google Scholar 

  32. Ziino, G.: Mod. Phys. Lett. A 22, 853 (2007)

    Article  ADS  MATH  Google Scholar 

  33. Barut, A.O.: Phys. Lett. B 38, 97 (1972); 46, 81 (1973)

    Article  ADS  Google Scholar 

  34. Defaria-Rosa, M. A., Recami, E., Rodriguez, W.A., Jr: Phys. Lett. B 173, 233 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ziino, G.: Int. J. Mod. Phys. A 11, 2081 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Ziino, G.: Int. J. Theor. Phys. 39, 2605 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sakurai, J.J.: Invariance Principles and Elementary Particles, pp. 136-143. Princeton University Press, Princeton (1964)

  38. Mignani, R., Recami, E.: Nuovo Cimento A 24, 438 (1974)

    Article  ADS  Google Scholar 

  39. Mignani, R., Recami, E.: Int. J. Theor. Phys. 12, 299 (1975)

    Article  MathSciNet  Google Scholar 

  40. Recami, E., Ziino, G.: Nuovo Cimento A 33, 205 (1976)

    Article  ADS  Google Scholar 

  41. Colladay, D., Kostelecky, V.A.: Phys. Rev. D 55, 6760 (1997). ibid. D 58 116002 (1998)

    Article  ADS  Google Scholar 

  42. Kostelecky, V. A., Mewes, M.: Phys. Rev. D 69, 016005 (2004)

    Article  ADS  Google Scholar 

  43. Esposito, S., Salesi, G.: Mod. Phys. Lett. A 25, 597 (2010)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The author is very grateful to Dr. Salvatore Esposito for his incisive and detailed comments and his precious advice; he thanks as well Prof. V. V. Dvoeglazov, Dr. M. Dvornikov, Prof. E. Fiordilino and Dr. R. Plaga for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ziino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziino, G. ‘Majorana Mass’ Fermions as Untrue Majorana Particles, Rather Endowed with Pseudoscalar-Type Charges than Genuinely Neutral. Int J Theor Phys 55, 1775–1797 (2016). https://doi.org/10.1007/s10773-015-2818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2818-5

Keywords

Navigation