Skip to main content
Log in

Applications of Singh-Rajput Mes in Recall Operations of Quantum Associative Memory for a Two- Qubit System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recall operations of quantum associative memory (QuAM) have been conducted separately through evolutionary as well as non-evolutionary processes in terms of unitary and non- unitary operators respectively by separately choosing our recently derived maximally entangled states (Singh-Rajput MES) and Bell’s MES as memory states for various queries and it has been shown that in each case the choices of Singh-Rajput MES as valid memory states are much more suitable than those of Bell’s MES. it has been demonstrated that in both the types of recall processes the first and the fourth states of Singh-Rajput MES are most suitable choices as memory states for the queries ‘11’ and ‘00’ respectively while none of the Bell’s MES is a suitable choice as valid memory state in these recall processes. It has been demonstrated that all the four states of Singh-Rajput MES are suitable choice as valid memory states for the queries ‘1?’, ‘?1’, ‘?0’ and ‘0?’ while none of the Bell’s MES is suitable choice as the valid memory state for these queries also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hopfield, J.J.: Neural network and physical systems with emergent collective computational abilities. Proc. National Acad. Science, USA 79, 2554 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  2. Kanerwa, P.: Distributed memory and related models. In associative neural memories. Oxford University Press (1993)

  3. Eliece, Mc.R., Posner, E., Podemich, E., Venkatesh, S.: The capacity of the Hopfield associative memory. IEEE Inf. Theor. 33(4), 461 (1987)

    Article  MathSciNet  Google Scholar 

  4. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78(26), 5022–5025 (1997)

    Article  ADS  Google Scholar 

  5. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1(1), 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Li, S.S., Huang, Y.B.: Entanglement of superposition of multi states. Int. J. Quantum. Inf. 6, 561–565 (2008)

    Article  MATH  Google Scholar 

  7. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)

    Article  ADS  Google Scholar 

  8. Ventura, D., Martinez, T.: Quantum associative memory. Inf. Sci. 124, 273–296 (2000)

    Article  MathSciNet  Google Scholar 

  9. Grover, L.K.: A fast quantum mechanical algorithm for data base search. In: Proceedings 28th Annals ACM Symposium On Theory of Computing, pp. 212–221. ACM Press, Philadelphia (1996)

    Google Scholar 

  10. Ezkov, A., Nifanava, A., Ventura, D.: Distributed queries for quantum associative memories. Inf. Sci. 128, 271–293 (2000)

    Article  Google Scholar 

  11. Njafa Tchapet, J.P., Nara Engo, S.G., Woafo, P.: Quantum associate memory with improved distributed queries. Int. J. Theor. Phys. 52(6), 1787–1801 (2013)

    Article  Google Scholar 

  12. Zhau, R., Wang, H., Wu, Q., Shi, Y.: Quantum associative neural network with non-linear search algorithm. Int. J. Theor. Phys. 51(3), 705–723 (2012)

    Article  Google Scholar 

  13. Njafa Tchapet, J.P., Nara Engo, S.G., Woafo, P.: Concise Quantum Associative Memory with Nonlinear Search Algorithm (2013). arXiv:1211,7187v4 [Quantum ph]

  14. Rosenbaum, D.: Binary superposed decision diagram. Quantum Inf. Process. 9(4), 463–496 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abrams, D.S., Seth, L.: Nonlinear search diagram. Phys, Rev. Lett. 81, 3992–3995 (1998)

    Article  ADS  Google Scholar 

  16. Salman, T., Baram, Y.: Quantum set intersection and its applications to associate memory. J. Machine Learn. Res. 13, 3177–3206 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Miyajima, H., Shigei, N., Arima, K.: Some quantum search algorithms for arbitrary initial amplitude distribution. Proc. VI Int. Conf. Natl. Comput (ICNC) 8, 603 (2010)

    Google Scholar 

  18. Ventura, D.: Artificial associative memory using quantum process. Proc. Int. Conf. Comput. Int. Neuro Sci. 2, 218–221 (1998)

    Google Scholar 

  19. Arima, K., Shigei, N., Miyajima, H.: A proposal of a quantum search algorithm. Proc. Int. conf. Convergence Inf. Tech. 1, 1559 (2009)

    Google Scholar 

  20. Singh, M.P., Rajput, B.S.: Maximally entangled states of two-qubit systems. Int. J. Theor. Phys. 52, 4237–4255 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Singh, M.P., Rajput, B.S.: Pattern classification using maximally entangled quantum states. Eur. Phys. J. Plus 129(57), 1–13 (2014)

    Google Scholar 

  22. Singh, M.P., Rajput, B.S.: New maximally entangled states and pattern classification in two qubit system. Int. J. Theor. Phys. 53(9), 3226–3238 (2014)

    Article  MATH  Google Scholar 

  23. Tittel, W., Bendel, J., Zbinden, H., Gisin, N.: Quantum cryptography using entangled photons in energy-time bell states. Phys. Rev. Lett. 84, 4737–4740 (2000)

    Article  ADS  Google Scholar 

  24. Grover, L.K.: Super classicxal search algorithm to find an element in unsorted array. Phys. Rev. Lett. 79, 4709 (1997). 80, 1329 (1998)

    Article  ADS  Google Scholar 

  25. Shack, R.: Quantum computer to study quantum chaos. Phys. Rev. A57, 1634 (1998)

    Article  ADS  Google Scholar 

  26. Ventura, D., Martinez, T.: Initializing the amplitude distribution of quantum state. Found. Phys. Lett. 12(6), 547–559 (1999)

    Article  MathSciNet  Google Scholar 

  27. Howell, J.C., Yeazell, J.A., Ventura, D.: Optical simulating a quantum associative memory. Phys. Rev. A 62, 042303–308 (2000)

    Article  ADS  Google Scholar 

  28. Boyer, M., Brassard, G., Hoyer, P., Trapp, A.: Tight Bounds on Quantum Searching. In: Proceedings of the Workshop on Physics of Computation, pp. 36–43 (1996)

Download references

Acknowledgments

Author Manu Pratap Singh thankfully Acknowledges the fianancial support of University Grants Commission, New Delhi in the form of a Major Research Project: MRP-Major-Comp-2013-39460.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Rajput.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.P., Rajput, B.S. Applications of Singh-Rajput Mes in Recall Operations of Quantum Associative Memory for a Two- Qubit System. Int J Theor Phys 55, 1753–1770 (2016). https://doi.org/10.1007/s10773-015-2815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2815-8

Keywords

Navigation