Skip to main content
Log in

A New Multipartite Entanglement Measure for Arbitrary n-qudit Pure States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a multipartite entanglement measure for arbitrary pure states, which is presented based on reduced density matrices of multi-qudit pure states. We review some multipartite entanglement measures based on density matrices. This is helpful for us to introduce a new good entanglement measure, which is vanishing if and only if a state is separable, invariant under local unitary transformations and non-increasing under local operations assisted by classical communication. We apply our entanglement measure for some explicit examples. It demonstrates that our entanglement measure is practical and convenient for computation. It can also distinguish the relatively high entanglement and the maximal entanglement. In short, our entanglement measure is good at characterizing multipartite entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822–829 (1998)

    Article  ADS  Google Scholar 

  7. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Gu̇hne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 78, 2031 (1996)

    Article  ADS  Google Scholar 

  10. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  11. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619–1633 (1998)

    Article  ADS  Google Scholar 

  12. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1–51 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  14. Rungta, P., Buzěk, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883–892 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  17. Coffman, V., Kundu, G., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  18. Osterloh, A., Siewert, J.: Constructing N-qubit entanglement monotones from antilinear operators. Phys. Rev. A 72, 012337 (2005)

    Article  ADS  Google Scholar 

  19. Fei, S.M., Zhao, M.J., Chen, K., Wang, Z.X.: Experimental determination of entanglement for arbitrary pure states. Phys. Rev. A 80, 032320 (2009)

    Article  ADS  Google Scholar 

  20. Barnum, H., Linden, N.: Monotones and invariants for multi-particle quantum states. J. Phys. A: Math. Gen 34, 6787–6805 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Hassan, A.S.M., Joag, P.S.: Geometric measure for entanglement in N-qudit pure states. Phys. Rev. A 80, 042302 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Chen, L., Xu, A., Zhu, H.: Computation of the geometric measure of entanglement for pure multiqubit states. Phys. Rev. A 82, 032301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. de Vicente, J.I., Spee, C., Kraus, B.: Maximally Entangled Set of Multipartite Quantum States. Phys. Rev. Lett 111, 110502 (2013)

    Article  ADS  Google Scholar 

  24. Facchi, P., Florio, G., Parisi, G., Pascazio, S.: Maximally multipartite entangled states. Phys. Rev. A 77, 060304 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zha, X.W., Song, H.Y., Feng, F.: A Criterion to Identify Maximally Entangled Four-Qubit State. Commun. Theor. Phys 56, 827–830 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Zha, X.W., Song, H.Y., Qi, J.X., Wang, D., Lan, Q.: A maximally entangled seven-qubit state. J. Phys. A: Math. Theor 45, 255302 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zha, X.W., Yuan, C.Z., Zhang, Y.P.: Generalized criterion for a maximally multi-qubit entangled state. Laser Phys. Lett. 10, 045201 (2013)

    Article  ADS  Google Scholar 

  28. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A: Math. Gen. 38, 1119–1131 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A: Math. Theor. 40, 13407–13421 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Zhao, C., Yang, G.W., Hung, W., Li, X.Y.: A multipartite entanglement measure based on coefficient matrices. Quantum Inf. Process 14, 2861–2881 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. Li, X.R., Li, D.F.: Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states. Phys. Rev. A 86, 042332 (2012)

    Article  ADS  Google Scholar 

  32. Li, X.R., Li, D.F.: Classification of general n-qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix. Phys. Rev. Lett. 108, 180502 (2012)

    Article  ADS  Google Scholar 

  33. Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43, 4273–4278 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Brennen, G.K.: An observable measure of entanglement for pure states of multi-qubit systems. Quantum Inf. Comput. 3, 619–626 (2003)

    MATH  MathSciNet  Google Scholar 

  35. Ichikawa, T., Sasaki, T., Tsutsui, I.: Entanglement measures for intermediate separability of quantum states. Phys. Rev. A 79, 052307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. Ma, Z.H., Chen, Z.H., Chen, J.L., Spengler, C., Gabriel, A., Huber, M.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325 (2011)

    Article  ADS  Google Scholar 

  37. Chen, Z.H., Ma, Z.H., Chen, J.L., Severini, S.: Improved lower bounds on genuine-multipartite-entanglement concurrence. Phys. Rev. A 85, 062320 (2012)

    Article  ADS  Google Scholar 

  38. Du̇r, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  39. Li, H., Wang, S.H., Cui, J.L., Long, G.L.: Quantifying entanglement of arbitrary-dimensional multipartite pure states in terms of the singular values of coefficient matrices. Phys. Rev. A 87, 042335 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant (No. 61272175, 61572109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Yang, Gw. & Li, Xy. A New Multipartite Entanglement Measure for Arbitrary n-qudit Pure States. Int J Theor Phys 55, 1668–1678 (2016). https://doi.org/10.1007/s10773-015-2804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2804-y

Keywords

Navigation