Skip to main content
Log in

Enhancing Robustness of Entanglement in Finite Temperature Environment Using Quantum Measurement Reversal

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We demonstrate methods of enhancing robustness of entanglement of two-qubit systems undergoing generalized amplitude damping decoherence using weak measurement and measurement reversal. The results show that the local action of generalized amplitude damping noise can cause sudden death of entanglement, and the weak measurement and measurement reversal is useful for combating generalized amplitude damping decoherence and recovering the entanglement of two entangled qubits. In addition, the results indicate that it would be much more easily implemented by applying quantum measurement reversal on a single-qubit to enhance robustness of entanglement in finite temperature environment, than on both qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Yu, T., Eberly, J.H.: Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Souto Riberio, P.H., Davidovich, L.: Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  4. Maniscalco, S., Francica, F., Zaffino, R.L., Lo Gullo, N., Plastina, F.: Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. Zong, X., Du, C., Yang, M., Yang, Q., Cao, Z.L.: Phys. Rev. A 90, 062345 (2014)

    Article  ADS  Google Scholar 

  6. Zhang, J., Wu, R.B., Li, C.W., Tarn, T.J.: IEEE Transactions on Automation Control 55, 619 (2010)

    Article  MathSciNet  Google Scholar 

  7. Das, S., Agarwal, G.S.: Phys. Rev. A 81, 052341 (2010)

    Article  ADS  Google Scholar 

  8. Apollaro, T.J.G., Cuccoli, A., Di Franco, C., Paternostro, M., Plastina, F., Verrucchi, P.: New J. Phys. 8, 083046 (2010)

    Article  Google Scholar 

  9. Siomau, M., Kamli, A.A.: Phys. Rev. A 86, 032304 (2012)

    Article  ADS  Google Scholar 

  10. Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  11. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  12. Baghbanzadeh, S., Rezakhani, A.T.: Phys. Rev. A 88, 062320 (2013)

    Article  ADS  Google Scholar 

  13. Korotkov, A.N., Keane, K.: Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  14. Ota, Y., Ashhab, S., Nori, F.: J. Phys. A: Math. Theor. 45, 415303 (2012)

    Article  MathSciNet  Google Scholar 

  15. Yu, Y., Ye, L.: Quantum Inf. Process. 14, 321 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Singh, U., Pati, A.K.: Ann. Phys. 343, 141 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Liao, X.P., Fang, M.F., Fang, J.S., Zhu, Q.Q.: Chin. Phys. B 23, 020304 (2014)

    Article  ADS  Google Scholar 

  18. Yao, C., Ma, Z.H., Chen, Z.H., Serafini, A.: Phys. Rev. A 86, 022312 (2012)

    Article  ADS  Google Scholar 

  19. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  20. Lim, H.T., Lee, J.C., Hong, K.H., Kim, Y.H. Opt. Express 22, 19055 (2014)

    Article  ADS  Google Scholar 

  21. Zhang, Y.J., Han, W., Fan, H., Xia, Y.J.: Ann. Phys. 354, 203 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Xiao, X., Li, Y.L.: Eur. Phys. J. D. 67, 204 (2013)

    Article  ADS  Google Scholar 

  23. Doustimotlagh, N., Wang, S., You, C., Long, G.L.: Eur. Phys. Lett. 106, 60003 (2014)

    Article  ADS  Google Scholar 

  24. Tan, Q.Y., Wang, L., Li, J.X., Tang, J.W., Wang, X.W.: Int. J. Theor. Phys. 52, 612 (2013)

    Article  Google Scholar 

  25. Chen, L.B., Yang, W.: Laser Phys. Lett. 11, 105201 (2014)

    Article  ADS  Google Scholar 

  26. Zhang, J., Zhang, T., Xuereb, A.: Ann. Phys. 527, 147 (2015)

    Article  MathSciNet  Google Scholar 

  27. Li, Y.L., Xiao, X.: Quantum Inf. Process. 12, 3067 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  29. Hill, S.: Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  30. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  31. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by NSFC (Grant Nos. U1204616, 61378011, 11374096), Program for ScienceTechnology Innovation Talents in Universities of Henan Province (Grant No. 2012HASTIT028), Program for Science and Technology Innovation Research Team in University of Henan Province (Grant No. 13IRTSTHN020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Hua Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, YH., Tong, L., Tan, YG. et al. Enhancing Robustness of Entanglement in Finite Temperature Environment Using Quantum Measurement Reversal. Int J Theor Phys 55, 1412–1422 (2016). https://doi.org/10.1007/s10773-015-2781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2781-1

Keywords

Navigation