Skip to main content
Log in

The Casimir Effect at Finite Temperature in a Six-Dimensional Vortex Scenario

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Casimir effect for parallel plates satisfying the Dirichlet boundary condition in the context of effective QED coming from a six-dimensional Nielsen-Olesen vortex solution of the Abelian Higgs model with fermions coupled to gravity is studied at finite temperature. We find that the sign of the Casimir energy remains negative under the thermal influence. It is also shown that the Casimir force between plates will be weaker in the higher-temperature surroundings while keeps attractive. This Casimir effect involving the thermal influence is still inconsistent with the known experiments. We find that the thermal correction can not compensate or even reduce the modification from this kind of vortex model to make the Casimir force to be in less conflict with the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaluza, T.: Sitz. Preuss. Akad. Wiss. Phys. Math. K1(1), 966 (1921)

    Google Scholar 

  2. Klein, O.: Z. Phys 37, 895 (1926)

    Article  ADS  MATH  Google Scholar 

  3. Rubakov, V.A., Shaposhnikov, M.E.: Phys. Lett. B125, 136 (1983)

    Article  ADS  Google Scholar 

  4. Visser, M.: Phys. Lett. B159, 22 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  5. Horava, P., Witten, E.: Nucl. Phys. B460, 506 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. Horava, P., Witten, E.: Nucl. Phys. B475, 94 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  7. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Lett. B429, 263 (1998)

    Article  ADS  Google Scholar 

  8. Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Lett. B436, 257 (1998)

    Article  ADS  Google Scholar 

  9. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Rev. D59, 086004 (1999)

    ADS  Google Scholar 

  10. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 4690 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Brevik, I., Milton, K.A., Nojiri, S., Odintsov, S.D.: Nucl. Phys. B599, 305 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Elizalde, E., Nojiri, S., Odintsov, S.D.: Phys. Rev. D70, 043539 (2004)

    ADS  Google Scholar 

  14. Gherghetta, T., Shaposhnikov, M.E.: Phys. Rev. Lett. 85, 041 (2000)

    Article  MathSciNet  Google Scholar 

  15. Dubovsky, S.L., Rubakov, V.A., Tinyakov, P.G.: JHEP 0008, 041 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Randjbar-Daemi, S., Shaposhnikov, M: JHEP 0304, 016 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. Giovannini, M.: Phys. Rev. D66, 044016 (2002)

    ADS  MathSciNet  Google Scholar 

  18. Giovannini, M., Meyer, H., Shaposhnikov, M.E.: Nucl. Phys. B619, 615 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  19. Randjbar-Daemi, S., Shaposhnikov, M.: Nucl. Phys. B645, 188 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. Casimir, H.B.G.: Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    MATH  Google Scholar 

  21. Plunien, G., Muller, B., Greiner, W.: Phys. Rep. 134, 87 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  22. Ambjoen, J., Wolfram, S.: Ann. Phys. (N. Y.) 147, 1 (1983)

    Article  ADS  Google Scholar 

  23. Elizalde, E., Odintsov, S.D., Romeo, A., Bysenko, A.A., Zerbini, S.: Zeta Regularization Techniques with Applications. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  24. Elizalde, E.: Ten Physical Applications of Spectral Zeta Functions. Springer-Verlag, Berlin (1995)

    MATH  Google Scholar 

  25. Milton, K.A.: Physical Manifestation of Zero-Point Energy. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  26. Mostepanenko, V.M., Trunov, N.N.: The Casimir Effect and its Applications. Oxford University Press, Oxford (1997)

    Google Scholar 

  27. Bordag, M., Mohideen, U., Mostepanenko, V.M.: Phys. Rep. 353, 1 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Mohideen, U., Roy, A.: Phys. Rev. Lett. 81, 4549 (1998)

    Article  ADS  Google Scholar 

  29. Lamoreaux, S.K.: Rep. Prog. Phys. 68, 201 (2005)

    Article  ADS  Google Scholar 

  30. Poppenhaeger, K., Hossenfelder, S., Hofmann, S., Bleicher, M.: Phys. Lett. B582, 1 (2004)

    Article  ADS  Google Scholar 

  31. Cheng, H.: Mod. Phys. Lett. A21, 1957 (2006)

    Article  ADS  Google Scholar 

  32. Cheng, H.: Phys. Lett. B643, 311 (2006)

    Article  ADS  Google Scholar 

  33. Cavalcanti, R.M.: Phys. Rev. D69, 065015 (2004)

    ADS  Google Scholar 

  34. Hertzberg, M.P., Jaffe, R.L., Kardar, M., Scardicchio, A.: Phys. Rev. Lett. 95, 250402 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  35. Edery, A.: Phys. Rev. D75, 105012 (2007)

    ADS  Google Scholar 

  36. Edery, A., Graham, N., MacDonald, I.: Phys. Rev. D79, 125018 (2009)

    ADS  Google Scholar 

  37. Cheng, H.: Phys. Lett. B668, 72 (2008)

    Article  ADS  Google Scholar 

  38. Kirsten, K., Fulling, S.A.: Phys. Lett. B671, 179 (2009)

    ADS  Google Scholar 

  39. Kirsten, K., Fulling, S.A.: Phys. Rev. D79, 065019 (2009)

    ADS  MathSciNet  Google Scholar 

  40. Milton, K.A., Wagner, J.: Phys. Rev. D80, 125028 (2009)

    ADS  Google Scholar 

  41. Elizalde, E., Odintsov, S.D., Saharian, A.A.: Phys. Rev. D79, 065023 (2009)

    ADS  MathSciNet  Google Scholar 

  42. Cheng, H.: Int. J. Theor. Phys. 52, 3229 (2013)

    Article  MATH  Google Scholar 

  43. Cheng, H.: Commun. Theor. Phys. 58, 229 (2012)

    Article  ADS  MATH  Google Scholar 

  44. Flachi, A., Toms, D.: Nucl. Phys. B610, 144 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  45. Saharian, A.A., Setare, M.R.: Phys. Lett. B552, 119 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  46. Elizalde, E., Nojiri, S., Odintsov, S.D., Ogushi, S.: Phys. Rev. D67, 063515 (2003)

    ADS  MathSciNet  Google Scholar 

  47. Garriga, J., Pomarol, A.: Phys. Lett. B560, 91 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  48. Frank, M., Turan, I., Ziegler, L.: Phys. Rev. D76, 015008 (2007)

    ADS  Google Scholar 

  49. Linares, R., Morales-Tecotl, H.A., Pedraza, O.: Phys. Rev. D77, 066012 (2008)

    ADS  MathSciNet  Google Scholar 

  50. Frank, M., Saad, N., Turan, I.: Phys. Rev. D78, 055014 (2008)

    ADS  Google Scholar 

  51. Cheng, H.: Chin. Phys. Lett. 27, 031101 (2010)

    Article  ADS  Google Scholar 

  52. Cheng, H.: Commun. Theor. Phys. 53, 1125 (2010)

    Article  ADS  MATH  Google Scholar 

  53. Hertzberg, M.P., Jaffe, R.L., Kardar, M., Scardicchio, A.: Phys. Rev. D76, 045016 (2007)

    ADS  Google Scholar 

  54. Flachi, A., Tanaka, T.: Phys. Rev. D80, 124022 (2009)

    ADS  Google Scholar 

  55. Linares, R., Morales-Tecotl, H.A., Pedraza, O.: Phys. Lett. B633, 362 (2006)

    Article  ADS  Google Scholar 

  56. Bailin, D., Love, A.: Introduction to Gauge Field Theory. IOP Publishing Limited (1986)

  57. Cheng, H.: Chin. Phys. Lett. 22, 3032 (2005)

    Article  ADS  Google Scholar 

  58. Teo, L.P.: Phys. Lett. B672, 190 (2009)

    Article  ADS  Google Scholar 

  59. Teo, L.P.: Nucl. Phys. B819, 431 (2009)

    Article  ADS  Google Scholar 

  60. Teo, L.P.: JHEP 0906, 076 (2009)

    Article  ADS  Google Scholar 

  61. Cheng, H.: J. Phys. A35, 2205 (2002)

    ADS  Google Scholar 

  62. Rypestol, M., Brevik, I.: New J. Phys. 12, 013022 (2010)

    Article  ADS  Google Scholar 

  63. Cheng, H.: Chin. Phys. C35, 1084 (2011)

    Article  ADS  Google Scholar 

  64. Cheng, H.: Phys. Rev. D82, 045005 (2010)

    ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC No. 10875043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H. The Casimir Effect at Finite Temperature in a Six-Dimensional Vortex Scenario. Int J Theor Phys 55, 1354–1360 (2016). https://doi.org/10.1007/s10773-015-2776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2776-y

Keywords

Navigation