Skip to main content
Log in

Dissipative Scalar Field Theory: A Covariant Formulation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Caldeira-Leggett model of reservoir is generalized to a reservoir modeled by a continuum of real Klein-Gordon fields, instead of harmonic oscillators. A quantum Langevin type dissipative equation is obtained for the scalar field. The susceptibility of the medium is defined in terms of the reservoir Green’s function and the coupling function satisfying causality condition. The connection between the coupling function and the susceptibility of the medium is found to be a Hankel transform from which the coupling function can be determined in terms of the susceptibility of the medium. Noise currents and their fluctuation-dissipation relation are obtained. In a homogeneous medium or reservoir, explicit form of the quantum scalar field, and its large-time limit, are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dalvit, D.A.R., Milonni, P.W., Roberts, D.C. Rosa, F.S.S. (ed.): Lecture Notes in Physics 834, p.345. Springer-Verlag (2011)

  2. Guth, A.H.: Phys. Rev. D23, 347 (1981)

    ADS  Google Scholar 

  3. Brandenberger: Rev. Mod. Phys. 57, 1 (1985)

    Article  ADS  Google Scholar 

  4. Huttner, B., Barnett, S.M.: Phys. Rev. A46, 4306 (1992)

    Article  ADS  Google Scholar 

  5. Kheirandish, F., Soltani, M.: Phys. Rev. A78, 012102 (2008)

  6. Kheirandish, F., Jaffari, M.: Phys. Rev. A86, 022503 (2012)

    Article  ADS  Google Scholar 

  7. Kheirandish, F., Soltani, M., Jafari, M.: Phys. Rev. A84, 062120 (2011)

    Article  ADS  Google Scholar 

  8. Amooshahi, M.: Eur. Phys. J. D54, 115 (2009)

    ADS  Google Scholar 

  9. Caldeira, A.O., Leggett, A.J.: Phys. Rev. Lett. 46(211) (1981)

  10. Caldeira, A.O., Leggett, A.J.: Ann. Phys. 149(374) (1983)

  11. Caldeira, A.O., Leggett, A.J.: Physica 121A, 587 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. Weiss, U.: Quantum Dissipative Systems (1993, World Scientific) and the references therein

  13. Voss, R.F., Webb, R.A.: Phys. Rev. Lett. 47, 265 (1981)

    Article  ADS  Google Scholar 

  14. Martinis, J.M., Devoret, M.H., Clarke, J.: Phys. Rev. Lett. 55, 1543 (1985)

    Article  ADS  Google Scholar 

  15. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic, New York (2007)

    MATH  Google Scholar 

  16. Amooghorban, E., Kheirandish, F.: Int. J. Theor. Phys. 53, 2593–2615 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kheirandish, F., Amooshahi, A.: Mod. Phys. Lett. A 20(39), 3025–3034 (2005)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kheirandish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refaei, A., Kheirandish, F. Dissipative Scalar Field Theory: A Covariant Formulation. Int J Theor Phys 55, 432–439 (2016). https://doi.org/10.1007/s10773-015-2677-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2677-0

Keywords

Navigation