Skip to main content
Log in

Fermions Tunnelling from Black String and Kerr AdS Black Hole with Consideration of Quantum Gravity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, using the Hamilton-Jacobi Ansatz, we discuss the tunnelling of fermions when effects of quantum gravity are taken into account. We investigate two cases, black string and Kerr AdS black hole. For black string, the uncharged and un-rotating case, we find that the correction of Hawking temperature is only affected by the mass of emitted fermions and the quantum gravitational corrections slow down the increases of the temperature, which naturally leads to remnants left in the evaporation. For another case, the Kerr AdS black hole, we find that the quantum gravitational corrections are not only determined by the mass of the emitted fermions but also affected by the rotating properties of the AdS black hole. So with consideration of the quantum gravity corrections, an offset around the standard temperature always exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kraus, P., Wilczek, F.: Nucl. Phys. B 433, 403–420 (1995)

    Article  ADS  Google Scholar 

  2. Akhmedova, V., Pilling, T., Gill, A.D.: Phys. Lett. B 666, 269–271 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. Akhmedov, E.T., Pilling, T., Singleton, D.: Int. J. Mod. Phys. D 17, 2453 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Akhmedova, V., Pilling, T., Gill, A.D.: Phys. Lett. B 673, 227–231 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Akhmedov, E.T., Akhmedova, V.: Int. J. Mod. Phys. A 22, 1705 (2007)

    Article  ADS  MATH  Google Scholar 

  6. Chowdhury, B.D.: Pramana 70, 3–26 (2008)

    Article  ADS  Google Scholar 

  7. Akhmedov, E.T., Akhmedova, V.: Phys. Lett. B 642, 124–128 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042–5045 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 024007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Shankaranarayanan, S.: Class. Quant. Grav. 19, 2671–2688 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Agheben, M., Nadalini, M., Vanzo, L.: JHEP 0505, 014 (2005)

    Article  ADS  Google Scholar 

  12. Kerner, R., Mann, R.B.: Phys. Rev. D 73, 104010 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. Keski-Vakkuri, E., Kraus, P.: Nucl. Phys. B 491, 249–262 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kraus, P., Wilczek, F.: Nucl. Phys. B 437, 231–242 (1995)

    Article  ADS  Google Scholar 

  15. Jiang, Q.Q., Wu, S.Q.: Phys. Lett. B 635, 151–155 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Kerner, R., Mann, R.B.: Class. Quant. Grav. 25, 095014 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kerner, R., Mann, R.B.: Phys. Lett. B 665, 277–283 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ahmed, J., Saifullah, K.: JCAP 11, 023 (2011)

    Article  ADS  Google Scholar 

  19. Ahmed, J., Saifullah, K.: JCAP 11, 023 (2011)

    Article  ADS  Google Scholar 

  20. Li, R., Ren, J.R.: Phys. Lett. B 661, 370–372 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Chen, D.Y., Jiang, Q.Q., Zu, X.T.: Phys. Lett. B 665, 106–110 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. Jiang, Q.Q.: Phys. Rev. D 78, 044009 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. Criscienzo, R.D., Vanzo, L.: Eur. Phys. Lett. 82, 60001 (2008)

    Article  Google Scholar 

  24. Majhi, B.R.: Phys. Rev. D 79, 044005 (2009)

    Article  ADS  Google Scholar 

  25. Robinson, S.P., Wilczek, F.: Phys. Rev. Lett. 95, 011303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. Iso, S., Umetsu, H., Wilczek, F.: Phys. Rev. Lett. 151302, 96 (2006)

    MathSciNet  Google Scholar 

  27. Banerjee, R., Majhi, B.R.: Phys. Rev. D 79, 064024 (2009)

    Article  ADS  Google Scholar 

  28. Townsend, P.: Phys. Rev. D 15, 2795–2801 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  29. Amati, D., Ciafaloni, M., Veneziano, G.: Phys. Lett. B 216, 41–47 (1989)

    Article  ADS  Google Scholar 

  30. Garay, L.J.: Int. J. Mod. Phys. A 10, 145–166 (1995)

    Article  ADS  Google Scholar 

  31. Amelino-Camelia, G.: Int. J. Mod. Phys. D 11, 35–60 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kempf, A., Mangano, G., Mann, R.B.: Phys. Rev. D 52, 1108 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  33. Chang, L.N., Minic, D., Okamura, N.: Phys. Rev. D 65, 125028 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. Majhi, B.R., Vagenas, E.C.: Phys. Lett. B 725, 477 (2013)

    Article  ADS  Google Scholar 

  35. Battisti, M.V., Montani, G.: Phys. Lett. B 656, 96–101 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Chemissany, W., Das, S., Ali, A.F.: JCAP 1112, 017 (2011)

    Article  ADS  Google Scholar 

  37. Kim, W., Son, E. J., Yoon, M.: JHEP 0801, 035 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  38. Xiang, L., Wen, X.Q.: JHEP 0910, 046 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  39. Bina, A., Jalalzadeh, S., Moslehi, A.: Phys. Rev. D 81, 023528 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  40. Chen, D.Y., Wu, H.W., Yang, H.: Int. J. Mod. Phys. A 29, 1430054 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  41. Chen, D.Y., Jiang, Q.Q., Wang, P.: JHEP 11, 176 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  42. Chen, D.Y., Wu, H.W., Yang, H.: JCAP 03, 036 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. Nozari, K., Saghafi, S.: JHEP 11, 005 (2012)

    Article  ADS  Google Scholar 

  44. Chen, D.Y., Jiang, Q.Q., Zu, X.T.: Class. Quant. Grav. 25, 205022 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  45. Chen, D.Y., Wu, H.W., Yang, H.T.: Adv. High Energy Phys. 2013, 432412 (2013)

    MathSciNet  Google Scholar 

  46. Chen, D.Y.: Eur. Phys. J. C 74, 2687 (2014)

    Article  ADS  Google Scholar 

  47. Mu, B.R., Wang, P., Yang, H.T.: Adv. High Energy Phys. 2015, 898916 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China with Grant No. 11205125 and the Fundamental Research Funds of China West Normal University (13C009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-hua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Zh., Zhang, Lm. Fermions Tunnelling from Black String and Kerr AdS Black Hole with Consideration of Quantum Gravity. Int J Theor Phys 55, 401–411 (2016). https://doi.org/10.1007/s10773-015-2674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2674-3

Keywords

Navigation