Skip to main content
Log in

Quasinormal Modes of Massless Scalar Field Perturbation in Reissner-Nordström-de Sitter Quintessence Spacetime

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the WKB approximation method, the massless scalar quasinormal modes are studied in Reissner-Nordström-de Sitter quintessence spacetime. We analyze the effective potential and QNMs frequencies by varying angular harmonic index l, mass M, charge Q, quintessence energy b and cosmological constant L 2. The results show the effective potential and QNMs frequency are related to l, M, Q, b and L 2. Moreover, the b and L 2 can make the effective potential and QNMs frequency reduces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975). doi:10.1007/BF02345020

    Article  ADS  MathSciNet  Google Scholar 

  2. Parikh, M.K., Wilczek, F.: Hawking Radiation As Tunneling. Phys. Rev. Lett. 85, 5042–5045 (2000). doi:10.1103/PhysRevLett.85.5042

    Article  ADS  MathSciNet  Google Scholar 

  3. Srinivasan, K., Padmanabhan, T.: Particle production and complex path analysis. Phys. Rev. D 60, 024007 (1999). doi:10.1103/PhysRevD.60.024007

    Article  ADS  MathSciNet  Google Scholar 

  4. Kerner, R., Mann, R.B.: Fermions tunnelling from black holes. Class. Quantum Gravity 25, 5014 (2008). doi:10.1088/0264-9381/25/9/095014

    Article  MathSciNet  Google Scholar 

  5. Wu, S.Q., Jiang, Q.Q.: Hawking radiation of charged particles as tunneling from Reissner- Nordstrom-de Sitter black holes with a global monopole. Phys. Lett. B 639(6), 684–684 (2006). doi:10.1016/j.physletb.2006.06.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Jiang, Q.Q., Wu, S.Q., Cai, X.: Hawking radiation from (2 + 1)-dimensional BTZ black holes. Phys. Lett. B 651, 58–64 (2007). doi:10.1016/j.physletb.2007.05.058

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Jiang, Q.Q.: Dirac particles tunnelling from black rings. Phys. Rev. D 78, 044009 (2008). doi:10.1103/PhysRevD.78.044009

    Article  ADS  MathSciNet  Google Scholar 

  8. Lin, K., Yang, S.Z.: Fermion tunnels of higher-dimensional anti-de Sitter Schwarzschild black hole and its corrected entropy. Phys. Lett. B 680(5), 506–509 (2009). doi:10.1016/j.physletb.2009.09.032

    Article  ADS  MathSciNet  Google Scholar 

  9. Chen, D.Y., Wu, H.W., Yang, H.T.: Fermions Tunnelling with Effects of Quantum Gravity. Adv. High. Energy Phys. 2013, 432412 (2013). doi:10.1155/2013/432412

    MathSciNet  Google Scholar 

  10. Chen, D.Y., Jiang, Q.Q., Wang, P., Yang, H.T.: Remnants, fermions tunnelling and effects of quantum gravity. J. High Energy Phys. 2013(11), 173 (2013). doi:10.1007/jhep11(2013)176

    Article  MathSciNet  Google Scholar 

  11. Chen, D.Y., Wu, H.W., Yang, H.T.: Observing remnants by fermions tunneling. J. Cosmol. Astropart. Phys. 2014(3), 036 (2014). doi:10.1088/1475-7516/2014/03/036

    Article  MathSciNet  Google Scholar 

  12. Chen, D.Y.: Dirac particles tunneling from five-dimensional rotating black strings influenced by the generalized uncertainty principle. Eur. Phys. J. C 74(1), 2687 (2014). doi:10.1140/epjc/s10052-013-2687-0

    Article  ADS  Google Scholar 

  13. Chen, D.Y., Li, Z.H.: Remarks on Remnants by Fermions Tunnelling from Black Strings. Adv. High. Energy Phys. 2014, 620157 (2014). doi:10.1155/2014/620157

    Article  Google Scholar 

  14. Deng, G.M.: Hawking radiation of charged rotating AdS black holes in conformal gravity for charged massive particles, complex scalar and Dirac particles. Gen. Relat. Gravit. 46, 1757 (2014). doi:10.1007/s10509-014-1980-1

    Article  ADS  Google Scholar 

  15. Wu, S.Q., Deng, G.M., Wu, D.: Hawking radiation from rotating AdS black holes in conformal gravity. Astrophys. Space Sci. 352, 751 (2014). doi:10.1007/s10714-014-1757-4

    Article  ADS  Google Scholar 

  16. Wu, S.Q., Peng, J.J.: Thermodynamics and Hawking radiation of five-dimensional rotating charged Godel black holes. Phys. Rev. D. 83, 044028 (2011). doi:10.1103/PhysRevD.83.044028

    Article  ADS  Google Scholar 

  17. Fernando, S., Correa, J.: Quasinormal Modes of Bardeen Black Hole: Scalar Perturbations. Phys. Rev. D 86, 064039 (2012). doi:10.1103/PhysRevD.86.064039

    Article  ADS  Google Scholar 

  18. Vishveshwara, C.V.: Scattering of Gravitational Radiation by a Schwarzschild Black-hole. Nature 227, 936–938 (1970). doi:10.1038/227936a0

    Article  ADS  Google Scholar 

  19. Chandrasekhar, S.: On the Equations Governing the Perturbations of the Schwarzschild Black Hole. Proc. R. Soc. London, Ser. A. 343, 289–298 (1975). doi:10.1098/rspa.1975.0066

    Article  ADS  MathSciNet  Google Scholar 

  20. Kokkotas, K.D., Schmidt, B.G.: Quasi-Normal Modes of Stars and Black Holes. Living Rev. Relativ. 2, 2 (1999). doi:10.12942/lrr-1999-2

    ADS  MathSciNet  Google Scholar 

  21. Zhang, Y., Zhou, Y., Li, G.P.: Quasinormal Modes of Spherically Symmetric Curve Spacetime with Dark Matter Term. Int. J. Theor. Phys. 53, 216–223 (2014). doi:10.1007/s10773-013-1799-5

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, K., Li, J., Yang, S.Z., Zu, X.T.: Massive Scalar Quasinormal Modes of Higher Dimensional Small Dilatonic Black Hole. Int. J. Theor. Phys. 52, 1370–1378 (2013). doi:10.1007/s10773-012-1455-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, K., Yang, N., Li, J.: Electromagnetic Quasinormal Modes in Hořava-Lifshitz Gravity. Int. J. Theor. Phys. 50, 48–55 (2011). doi:10.1007/s10773-010-0492-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Berti, E., Cardoso, V.: Quasinormal modes and thermodynamic phase transitions. Phys. Rev. D 77, 087501 (2008). doi:10.1103/PhysRevD.77.087501

    Article  ADS  Google Scholar 

  25. Wang, B., Lin, C.Y., Abdalla, E.: Quasinormal modes of Reissner-Nordström Anti-de Sitter Black Holes. Phys. Lett. B 481, 79 (2000). doi:10.1016/S0370-2693(00)00409-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Berti, E., Kokkotas, K.D.: Quasinormal modes of Reissner-Nordström-anti-de Sitter black holes: scalar, electromagnetic and gravitational perturbations. Phys. Rev. D 67, 064020 (2003). doi:10.1103/PhysRevD.67.064020

    Article  ADS  MathSciNet  Google Scholar 

  27. Li, J., Ma, H., Lin, K.: Dirac quasinormal modes in spherically symmetric regular black holes. Phys. Rev. D 88, 064001 (2013). doi:10.1103/PhysRevD.88.064001

    Article  ADS  Google Scholar 

  28. Dorband, E.N., Berti, E., Diener, P., Schnetter, E., Tiglio, M.: Numerical study of the quasinormal mode excitation of Kerr black holes. Phys. Rev. D 74, 084028 (2006). doi:10.1103/PhysRevD.74.084028

    Article  ADS  MathSciNet  Google Scholar 

  29. Nollert, H.P., Schmidt, B.G.: Quasinormal modes of Schwarzschild black holes: Defined and calculated via Laplace transformation. Phys. Rev. D 45, 2617 (1992). doi:10.1103/PhysRevD.45.2617

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Zhidenko, A.: Quasi-normal modes of Schwarzschild de Sitter black holes. Class. Quant. Grav. 21, 273–280 (2004). doi:10.1088/0264-9381/21/1/019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Schutz, B.F., Will, C.M.: Black hole normal modes - A semianalytic approach. Astrophys. J. Lett. 291, L33 (1985). doi:10.1086/184453

    Article  ADS  Google Scholar 

  32. Iyer, S., Will, C.M.: Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. Phys. Rev. D 35, 3621 (1987). doi:10.1103/PhysRevD.35.3621

    Article  ADS  Google Scholar 

  33. Konoplya, R.A.: Quasinormal behavior of the D-dimensional Schwarzschild black hole and the higher order WKB approach. Phys. Rev. D 68, 024018 (2003). doi:10.1103/PhysRevD.68.024018

    Article  ADS  Google Scholar 

  34. Choudhury, T.R., Padmanabhan, T.: Concept of temperature in multi-horizon spacetimes: analysis of Schwarzschild De Sitter metric. Gen. Relat. Grav. 39, 1789 (2007). doi:10.1007/s10714-007-0489-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Feng, Z.W., Zhang, L., Zu, X.T.: The remnants in Reissner Nordström de Sitter quintessence black hole. Modern Physics Letters A. 29, 1450123 (2014). doi:10.1142/S0217732314501235

    Article  ADS  MathSciNet  Google Scholar 

  36. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press (2002)

Download references

Acknowledgements

This work is supported in part by the Natural Science Foundation of China (Grant No. 11178018 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Wen Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, ZW., Li, GP. & Zu, XT. Quasinormal Modes of Massless Scalar Field Perturbation in Reissner-Nordström-de Sitter Quintessence Spacetime. Int J Theor Phys 55, 367–379 (2016). https://doi.org/10.1007/s10773-015-2669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2669-0

Keywords

Navigation