Skip to main content
Log in

Performance of Quantum Entanglement, Quantum Correlation and Bell Non-locality of Atom-cavity System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the description of ameliorated measurement-induced disturbance (AMID) and negativity, the behaviors of quantum correlation (QC) and quantum entanglement (QE) are discussed for a model of two atoms resonantly interact with a single-mode cavity simultaneously. The result shows that the QC and QE of two atoms can be transferred to those of atom-cavity subsystems during the evolution, and vice versa. Meanwhile, the AMID can reveal more properties of QC than negativity in the presented physical system. It is worth noting that the AMID can be increased evidently for the certain special chosen system parameters. In addition, Bell non-locality for this given system is analyzed and it is shown that Bell non-locality can also be transferred regularly between all bipartite states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Cambridge University Press, Cambridge (2000)

  3. Dirac, P.A.M.: 4th edn. Clarendon Press, Oxford (1958)

  4. Luo, S.: Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  5. Mohamed, A.-B.A.: Ann. Phys. 327, 3130–3137 (2012)

    Article  ADS  MATH  Google Scholar 

  6. Hu, M.L., Fan, H.: Ann. Phys. 327, 851–860 (2012)

    Article  ADS  MATH  Google Scholar 

  7. He, J., Wu, T., Ye, L.: Int. J. Theor. Phys. 52, 3381–3392 (2013)

    Article  MATH  Google Scholar 

  8. Xu, S., Song, X.K., Shi, J.D., Ye, L.: Phys. Lett. B 733, 1–5 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. He, J., Xu, S., Yu, Y., Ye, L.: Phys. Lett. B 740, 322–328 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Henderson, L., Vedral, V.: J. Phys. A 34, 6899 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  12. He, J., Ye, L.: Int. J. Theor. Phys. 53, 3154–3163 (2014)

    Article  MATH  Google Scholar 

  13. Dakić, B., Vedral, V., Brukner, Č.: Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  14. Luo, S., Fu, S.: Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. Luo, S., Fu, S.: Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  16. Hu, M.L., Fan, H.: Ann. Phys. 327, 2343–2353 (2012)

    Article  ADS  MATH  Google Scholar 

  17. Dhar, H.S., Banerjee, S., Chatterjee, A., et al.: Ann. Phys. 331, 97–109 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Mohamed, A.-B.A.: Int. J. Theor. Phys. 51, 2779–2786 (2012)

    Article  MATH  Google Scholar 

  19. Zhang, G.F., Jiang, Z.T., Abliz, A.: Ann. Phys. 326, 867–875 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Zhang, G.F., Fan, H., Ji, A.L., et.al.: Ann. Phys. 326, 2694–2701 (2011)

    Article  ADS  MATH  Google Scholar 

  21. Xu, S., Song, X.K., Ye, L.: Quantum Inf. Process 13, 1013–1024 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Guo, J.L., Wang, L., Long, G.L.: Ann. Phys. 330, 192–200 (2013)

    Article  ADS  MATH  Google Scholar 

  23. Wu, S., Poulsen, U.V., Mølmer, K.: Phys. Rev. A 80, 032319 (2009)

    Article  ADS  Google Scholar 

  24. Mišta, L. Jr., Tatham, R., Girolami, D., Korolkova, N., Adesso, G.: Phys. Rev. A 83, 042325 (2011)

    Article  ADS  Google Scholar 

  25. Girolami, D., Paternostro, M., Adesso, G.: J. Phys. A: Math. Theor. 44, 352002 (2011)

    Article  Google Scholar 

  26. Bellomo, B., Lo France, R., Compagno, G.: Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  27. Vidal, G., Werner, R.F.: Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  28. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  29. Girolami, D., Adesso, G.: Phys. Rev. A 84, 052110 (2011)

    Article  ADS  Google Scholar 

  30. Piani, M.: Rev, Phys. A 86, 034101 (2012)

    Article  Google Scholar 

  31. Song, X., Wu, T., Ye, L.: Eur. Phys. J. D 67, 96 (2013)

    Article  ADS  Google Scholar 

  32. Malinovsky, V.S., Sola, I.R.: Phys. Rev. Lett. 93, 190502 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  33. Horodecki, R., Horodecki, P., Horodecki, M.: Phys. Lett. A 200, 340 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Horodecki, R.: Phys. Lett. A 210, 223 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Research Project of Education Department of Anhui Province of China (No. KJ2013A205) and Natural Science Research Project of Fuyang Normal (College Grant No. 2013FSKJ16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yong Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Zy., He, J. Performance of Quantum Entanglement, Quantum Correlation and Bell Non-locality of Atom-cavity System. Int J Theor Phys 55, 278–286 (2016). https://doi.org/10.1007/s10773-015-2660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2660-9

Keywords

Navigation